对梯度下降原理的理解

在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。

1. 梯度

    在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂y0)T.或者▽f(x0,y0),如果是3个参数的向量梯度,就是(∂f/∂x, ∂f/∂y,∂f/∂z)T,以此类推。

    那么这个梯度向量求出来有什么意义呢?他的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。

     

2. 梯度下降与梯度上升

    在机器学习算法中,在最小化损失函数时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数,和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。

    梯度下降法和梯度上升法是可以互相转化的。比如我们需要求解损失函数f(θ)的最小值,这时我们需要用梯度下降法来迭代求解。但是实际上,我们可以反过来求解损失函数 -f(θ)的最大值,这时梯度上升法就派上用场了。

    下面来详细总结下梯度下降法。        

3. 梯度下降法算法详解

3.1 梯度下降的直观解释

    首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山峰低处。

    从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。


3.2 梯度下降的相关概念

    在详细了解梯度下降的算法之前,我们先看看相关的一些概念。

    1. 步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用上面下山的例子,步长就是在当前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度。

    2.特征(feature):指的是样本中输入部分,比如样本(x0,y0),(x1,y1),则样本特征为x,样本输出为y。

    3. 假设函数(hypothesis function):在监督学习中,为了拟合输入样本,而使用的假设函数,记为hθ(x)。比如对于样本(xi,yi)(i=1,2,...n),可以采用拟合函数如下: hθ(x) = θ01x。

    4. 损失函数(loss function):为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数。在线性回归中,损失函数通常为样本输出和假设函数的差取平方。比如对于样本(xi,yi)(i=1,2,...n),采用线性回归,损失函数为:

              J(θ0,θ1)=∑i=1m(hθ(xi)−yi)2

     其中 xi表示样本特征x的第i个元素, yi表示样本输出y的第i个元素, hθ(xi)为假设函数。   

3.3 梯度下降的详细算法

    梯度下降法的算法可以有代数法和矩阵法(也称向量法)两种表示,如果对矩阵分析不熟悉,则代数法更加容易理解。不过矩阵法更加的简洁,且由于使用了矩阵,实现逻辑更加的一目了然。这里先介绍代数法,后介绍矩阵法。

 

3.3.1 梯度下降法的代数方式描述

    1. 先决条件: 确认优化模型的假设函数和损失函数。

    比如对于线性回归,假设函数表示为  hθ(x1,x2,...xn)=θ0+θ1x1+...+θnxn, 其中 θi (i = 0,1,2... n)为模型参数, xi (i = 0,1,2... n)为每个样本的n个特征值。这个表示可以简化,我们增加一个特征 x0=1 ,这样 hθ(x0,x1,...xn)=∑i=0nθixi

    同样是线性回归,对应于上面的假设函数,损失函数为:

            J(θ0,θ1...,θn)=12m∑i=0m(hθ(x0,x1,...xn)−yi)2

 

    2. 算法相关参数初始化:主要是初始化 θ0,θ1...,θn,算法终止距离 ε以及步长 α。在没有任何先验知识的时候,我喜欢将所有的 θ初始化为0, 将步长初始化为1。在调优的时候再 优化。

    3. 算法过程:

      1)确定当前位置的损失函数的梯度,对于 θi,其梯度表达式如下:

         ∂∂θiJ(θ0,θ1...,θn)

      2)用步长乘以损失函数的梯度,得到当前位置下降的距离,即 α∂∂θiJ(θ0,θ1...,θn)对应于前面登山例子中的某一步。

      3)确定是否所有的 θi,梯度下降的距离都小于 ε,如果小于 ε则算法终止,当前所有的 θi(i=0,1,...n)即为最终结果。否则进入步骤4.

      4)更新所有的 θ,对于 θi,其更新表达式如下。更新完毕后继续转入步骤1.

         θi=θi−α∂∂θiJ(θ0,θ1...,θn)

    下面用线性回归的例子来具体描述梯度下降。假设我们的样本是 (x1(0),x2(0),...xn(0),y0),(x1(1),x2(1),...xn(1),y1),...(x1(m),x2(m),...xn(m),yn),损失函数如前面先决条件所述:

     J(θ0,θ1...,θn)=12m∑i=0m(hθ(x0,x1,...xn)−yi)2

    则在算法过程步骤1中对于 θi 的偏导数计算如下:   

      ∂∂θiJ(θ0,θ1...,θn)=1m∑j=0m(hθ(x0j,x1j,...xnj)−yj)xij

    由于样本中没有 x0上式中令所有的 x0j为1.

    步骤4中 θi的更新表达式如下:

            θi=θi−α1m∑j=0m(hθ(x0j,x1j,...xnj)−yj)xij

    从这个例子可以看出当前点的梯度方向是由所有的样本决定的,加 1m 是为了好理解。由于步长也为常数,他们的乘机也为常数,所以这里 α1m可以用一个常数表示。

    在下面第4节会详细讲到的梯度下降法的变种,他们主要的区别就是对样本的采用方法不同。这里我们采用的是用所有样本。


PS:这个方法是对损失函数求最优的(最小化损失函数),所以是这里的梯度指的是损失函数的梯度。但损失函数里包含了原函数,所以求某个参数的梯度,也就是求损失函数对这个参数的偏导数(重点是求得复合函数的偏导数),然后再进行参数更新。

ps2:随机梯度下降和最小二乘法都是用来优化损失函数的,即求当损失函数最小时,参数的取值。然而,最小二乘法限制较多,所以一般使用随机梯度下降的多



  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值