自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(133)
  • 收藏
  • 关注

原创 Python爬虫技术快速入门

本文介绍了Python爬虫技术的基础知识和常用库。通过发送HTTP请求、解析HTML内容以及处理JavaScript渲染的页面,我们可以提取出互联网上的有用信息。对于更复杂的爬虫需求,可以使用Scrapy框架来构建高度定制化的爬虫程序。希望本文对你入门Python爬虫技术有所帮助!文末推荐。

2024-04-09 07:02:01 982

原创 【机器学习·浙江大学】机器学习概述、支持向量机SVM(线性模型)

支持向量机就是最大化margin的方法将直线上下移动所穿过的向量称为:支持向量(support vectors)——为什么呢?因为我们从上文讲到的确定最终直线的方法来看,最大化距离、确定直线,只和这几个穿过的支持向量有关(这也是为什么SVM适合小样本问题)X→1y1X1​y1​X→2y2X2​y2​X→3y3X3​y3​X→NyNXN​yN​X→X是特征向量;

2024-04-07 21:41:14 1156

原创 2023年度总结:允许迷茫,破除迷茫;专注自身,把握当下

我该如何来形容我这几年呢,像一只从从鸟巢中破壳,刚学会飞行的小鸟,以为能展翅翱翔至高空,却不慎跌入湖海,2022年的我,在湖水中拼命展翅,学会了游泳,却身心俱疲,但好在有目标有毅力。2023年的我,似乎仍然在湖海中迷茫漂泊,好在自己及时抓住了稻草,奋起直上游到了岸边,上岸的小鸟有了更清晰的目标和路线,但是她明白,想飞往更高的天空不是学会振翅就行的…在2023这一整年,我不想说我学到了多少计算机的专业知识,有多大的学业成就,我觉得我成长的不仅是学习,还有更多方面,下面是我的一些感悟。

2024-04-06 21:05:48 1210 18

原创 Python 人工智能实战|产生式规则推理系统:动物识别系统、智能客服系统

实现一个简单的自动问答系统。要求系统能够实现如下功能:如果用户"询问产品",则显示"了解您想了解的产品信息,请问您具体对哪些产品感兴趣?如果用户"询问价格",则显示"您可以在我们的官方网站上查询到最新的产品价格信息。如果用户"询问库存",则显示"您所感兴趣的产品目前还有货,您可以直接在官网进行购买。如果用户"投诉",则显示"非常抱歉给您带来不便,请您提供您的订单号,我们会尽快为您解决问题。

2024-04-01 11:03:21 1007

原创 Hadoop在ubuntu虚拟机上的伪分布式部署|保姆级教程

2.经后续测试发现问题,虽然已经为ubuntu系统设置了java的环境变量,但hadoop实际运行时仍会出现找不到java-jdk的现象,故再对hadoop的环境文件进行修改,此外,该文件还包括启动参数、日志、pid文件目录等信息。Hadoop和与之相关的很多工具都是通过java语言编写的,并且很多基于hadoop的应用开发也是使用java语言的,但是ubuntu系统不会默认安装java环境,所以需要安装java并配置环境变量。少了就说明上面的启动命令肯定没有完全运行成功,哪个少了就去google一下!

2024-03-30 14:14:12 755

原创 给虚拟机配置静态IP并使用FileZIlla在虚拟机和Windows之间传输文件(ssh和ftp两种方法)

🌸下面的步骤主要是配置虚拟机的静态IP,方便后续用FikeZilla在windows和虚拟机之间传输文件(否则用默认的ip分配方案为DHCP,每一次开机时的ip都是有可能不同的,这样就会导致.)

2024-03-30 11:36:22 1200

原创 【已解决】伪分布式Hadoop服务已经开启,但是无法访问http://localhost:9870(缺少NameNode进程)\http://localhost:8088

使用如下方法启动成功hadoop服务进入相应文件夹首先停止启动所有的节点,使用命令行启动stop-all.sh脚本使用jps命令查看当前hadoop运行貌似没问题其实这里就是有问题!!!后续解决方法里面说继续打开,查看web界面显示无法连接到。

2024-03-30 11:15:44 679

原创 VS2019下打包QT项目的方法(包含第三方库)、打包成一个 exe 安装包

请注意,使用资源文件时,你应该确保资源文件是通过Qt的构建过程嵌入到应用程序中。如果你想加载模型文件(例如.onnx或.trt文件),你可能需要将文件读取到内存中,然后使用模型加载库(例如用于加载ONNX模型的库)来处理它。在Qt项目中,一旦你定义了.qrc文件并且正确地设置了资源,你就可以通过资源路径来访问这些文件。如果你需要将图像转换为OpenCV的格式,你可以使用前面提到的QImageToCvMat函数来将QImage转换为cv::Mat,就像我们先前提到的那样。注意这样还是不能直接使用!

2024-03-28 21:22:42 749

原创 【已解决】在pycharm终端无法激活conda环境,但在cmd命令行中可以

pycharm 默认的终端是 Windows PowerShell将终端设置为 cmd.exe

2024-03-18 11:13:57 720

原创 【Leetcode每日一刷】二维数组花式遍历:一、顺/逆时针旋转矩阵 :48. 旋转图像、二、矩阵的螺旋遍历 |54. 螺旋矩阵

寻常的思路有以下两种:可能会误认为去模拟一下,一圈一圈的去遍历,然后进行旋转;又或者是想去找出当前坐标和旋转后像素对应坐标位置之间的关系,结果发现都想不出来很好的解决方法。它用了另外一种比较巧妙的方法,对于计算机比较好理解,但对于我们可能一下子想不到的方法去解决了。(对于这种题,只要有个印象,以后遇到类似题目就不会懵圈了。这题的意思很简单,就是让我们把矩阵。不可暴力模拟,先镜像,后水平翻转。❗❗核心思想/ 关键。

2024-03-14 16:12:20 590

原创 【计算机视觉】目标跟踪| Meanshift均值漂移算法详细介绍|附代码

背景:Meanshift算法是Fukunaga于1975年提出的,其基本思想是利用概率密度的梯度爬升来寻找局部最优。到了1995年,YizongCheng针对离x越近的采样点对x周围的统计特性越有效,定义了一族核函数,并根据所有样本点的重要性不同,设定了一个权重系数,扩大了MeanShift的使用范围。啥是概率密度???

2024-03-14 15:55:56 621

原创 【计算机视觉】目标跟踪| 光流算法详细介绍|附代码

光流(optical flow)是空间运动物体在观察成像平面上的像素运动的瞬时速度。所谓光流就是瞬时速率,在时间间隔很小(比如视频的连续前后两帧之间)时,也等同于目标点的位移💭🤔所以也就是说,只要我们求出这个“速度”,也就是只要确定当前目标区域的位移,即可确定这个目标在下一帧中的位置(有时候也会说,根据上一帧和当前帧的信息,确定目标在当前帧中的位置)。——这也是生成式方法中逐次逼近搜索的体现,光流法的关键也就在此🌸光流法是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到。

2024-03-13 17:45:56 1488 1

原创 【计算机视觉】目标跟踪任务概述和算法介绍

均值漂移算法(Mean Shift)、LK光流等。在当前帧对目标区域建模,下一帧寻找与模型最相似的区域就是预测位置,与传统的盲搜不同,它利用相邻帧之间目标位置变化不大的特点,采用迭代逼近的方式提高算法的搜索速度生成式方法:生成式跟踪方法的核心思想是建模目标的外观,并尝试在后续帧中重新找到这个外观。它通常通过建立一个目标的外观模型,然后在新的帧中寻找与该模型最相似的区域。判别式方法(如相关滤波):判别式方法是基于区分目标和背景的思想。它学习一个分类器或者滤波器来区分目标和周围的背景。

2024-03-11 21:47:05 1489

原创 【Leetcode每日一刷】滑动窗口:209.长度最小的子数组

更新当前窗口中的数据情况,再拿去和题目所需的可行解进行比对,判断当前窗口内的情况是否可行!找到一个可行解&更新得到一个可行解后,对题目最终需要的最优答案进行更新!🪧 滑动窗口本质也是双指针的一种技巧,特别适用于。左右指针滑窗口,一前一后齐头进。注意下面框架中的6个关键点!,等会你会发现它们操作是完全。本题思路(依据算法框架)❗❗核心思想/ 关键。

2024-03-10 21:19:57 814

原创 【Leetcode每日一刷】数组|双指针篇:977. 有序数组的平方、76. 最小覆盖子串(附滑动窗口法详解)

当有可能含负数的有序数组平方后,最大值只有可能位于数组两侧,整个数组呈一个凹函数,从两边向中间递减。但是这题的关键如上,也就是平方后数组由两边向中间递减,最大值只有可能位于两侧。由于这样的特性,利用。,每次循环,将左指针和右指针处的元素进行比较。更新当前窗口中的数据情况,再拿去和题目所需的可行解进行比对,判断当前窗口内的情况是否可行!双指针, 从两边向中间探测,互相比较,逐渐挑出最大值,再到次最大值…——两者的情况进行比对,判断当前窗口中的情况是否可行。完全一样时,就可行,换句话说,就是不能直接把。

2024-03-09 12:49:34 858

原创 【Leetcode每日一刷】数组|704. 二分查找、27. 移除元素

【易错】二分查找的重点就划分区间、逐渐缩小、两边夹,关于划分区间这题第二个代码我用的划分为[left,mid]和[mid+1,right],为什么不是**[left,mid-1]和[mid,right]**呢?—因为会容易出现死循环使用和public:right : -1;【重点】二分法的关键是缩小区间,死循环发生的原因是某次循环没有缩小区间导致二分失败。【重点】此题right设置为的原因是array.length也有可能是问题答案【重点】将二分查找的判断条件写成。

2024-03-06 19:56:23 925

原创 【QT C++实践】Qt 项目中一个界面动态处理多张数据库中的表|附源码

在之前那篇讲如何使用QT连接数据库时(),做了一个简单的对数据库进行增删改查的界面(如下)。但是存在一个问题就是:这个界面只是对一张表进行操作,但是我们知道,一般数据库中都不止一张表,如果这个界面能够自由选择数据库中的表进行展示,和对其进行操作,岂不更好?接下来我们就讲一下,如何基于上篇基础的对数据库中的表进行显示和操作,升级为可以。

2024-03-06 17:25:49 855

原创 【Leetcode每日一刷】贪心算法| 45.跳跃游戏 II

这题还是比【55.跳跃游戏】难一些的。第一个版本只是说,求跳跃的范围,覆盖到了终点即可。这题则是,能保证覆盖范围到达终点,求的是最少跳几次,跳到终点。这题的话也是偏直觉,最好能一步到就好,一步到不了,两步能到吗?两步还到不了,三步呢?听起来是不是还挺简单的?但是实现起来,还是有一些需要考虑的。明白了大致思路,但是实现起来还是有问题,我们再来捋一下思路。

2024-03-05 21:46:52 829

原创 QT C++实践| 连接数据库的登录界面实现| 附源码

在登录界面连接数据库,调用中的创建数据库连接。在关闭界面的函数内,关闭数据库,释放资源:if (db.isOpen()) {db.close();// 然后,从连接池中移除该连接遍历数据库,将用户名、密码依次和数据库中的信息进行对比,若有一样,则可以进入主界面。💁🏻‍♀️使用 QSqlQuery 来执行一个查询,并使用循环来遍历结果集。

2024-03-05 17:31:13 516

原创 【yolov8部署实战】VS2019+Onnxruntime环境部署yolov8-seg分割模型|含详细注释源码

YOLOv8-seg模型一共有两个输出:第一个输出:“output0”;其中116的前84个列与 YOLOv8目标检测模型输出定义一样,即cx,cy,w,h这4项再加80个类别的分数;后32列用于计算掩膜数据。第二个输出:“output1”;output0后32个字段与output1的数据做矩阵乘法后得到的结果,即为对应目标的掩膜数据。第二个输出:“output1”;output0后32个字段与output1的数据做矩阵乘法后得到的结果,即为对应目标的掩膜数据。

2024-03-03 13:56:25 1204

原创 【yolov8部署实战】VS2019环境下使用Onnxruntime环境部署yolov8目标检测|含源码

部署yolo项目,是我这几个月以来做的事情,最近打算把这几个月试过的方法,踩过的坑,以博客的形式,分享一下。关于下面动态中讲到的如何用opencv部署,我在上一篇博客中已经详细讲到了:【yolov8部署实战】VS2019环境下使用C++和OpenCV环境部署yolo项目|含详细注释源码。这篇博客主要讲讲使用onnxruntime部署主要参考:https://github.com/Amyheart/yolov5v8-dnn-onnxruntime/tree/main如果是只想要onnxruntime部署

2024-03-02 18:34:12 1542

原创 【yolov8部署实战】VS2019+OpenCV环境部署yolov8目标检测模型|含详细注释源码

yolov8 opencv模型部署(C++ 版)win10下 yolov8 tensorrt模型部署✨使用opencv推理yolov8模型,仅依赖opencv,无需其他库,以yolov8s为例子,注意:使用opencv4.8.1!使用opencv4.8.1!使用opencv4.8.1!如果你使用别的版本,例如opencv4.5,可能会出现错误至于怎么安装yolov8、训练模型、导出onnx博客中都有,这里不做详细解释。

2024-03-02 18:10:31 1907 4

原创 【Leetcode每日一刷】贪心算法|122.买卖股票的最佳时机 II、55. 跳跃游戏

🦄解题思路:;这是正确的直觉:没错,很有道理,但是我想到了一个反例:如下图,如果按照上面的思路,则第一个元素买入,第二个元素卖出;遍历到第二个元素时,由于已经卖出,按理来说不能再操作了,但是由于当前元素低于第三个元素,还应该买下第二个元素,这样似乎违法了每天只能有一个操作的前提。但是后来看了一些题解,发现这种情况根本不影响,虽然正确情况的:第 0 天买入,第 2 天卖出,那么利润为:prices[2] - prices[0]。

2024-03-01 21:01:49 767

原创 【Leetcode每日一刷】哈希表|纲领、242.有效的字母异位词、349. 两个数组的交集

下面针对做题要用到的三种结构讲一下(也是重复造轮子了算是)常见的三种哈希结构当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。unordered_set在C++11的时候被引入标准库了,而hash_set并没有,所以建议还是使用比较好,这就好比一个是官方认证的,hash_set,hash_map 是C++11标准之前民间高手自发造的轮子。🦄总结一下,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。

2024-02-29 21:56:17 1029

原创 【Leetcode每日一刷】动态规划算法: 62. 不同路径、63. 不同路径 II

前言:动规五部曲以下是《代码随想录》作者总结的动规五部曲确定dp数组(dp table)以及下标的含义确定递推公式(状态转移方程)dp数组如何初始化确定遍历顺序举例推导dp数组所有动态规划问题中,一个状态一定由上一个状态推导而来,这点就有别于贪心,贪心没有状态的推导更别说什么公式,贪心只是从局部选取最优解。例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

2024-02-29 21:09:54 839

原创 【Leetcode每日一刷】贪心算法01:455.分发饼干、376. 摆动序列、53. 最大子序和

代码随想录贪心算法并没有任何套路,它的本质是寻找局部最优解。严格的数学证明为以下两者数学归纳反证前者基本上是劝退了,反证就是看能不能对你想出的这种算法or模拟举出反例。与其叫贪心,我个人现在更愿意将其理解为模拟,偏常识形式的,没有一个统一的套路。可以从下面的题目中看出。

2024-02-28 20:19:57 1135 1

原创 QT C++实践|超详细数据库的连接和增删改查操作|附源码

🪧什么情况需要数据库?如果不是上面的原因化,一般可以使用数组来处理。🪧一般常使用的数据库驱动是和。二者区别在于,前者用于服务器存储信息,后者用于本地存储信息。并且QSQLITE主要用于嵌入式,占用资源非常低,占用内存小,通常几百k就搞定。这里博主因为对MySQL熟悉一些,就使用MySQL来进行数据库的连接。

2024-02-28 17:16:55 1333

原创 QT C++实战:实现用户登录页面及多个界面跳转

主要思路- 一个登录界面,以管理员Or普通用户登录- 管理员:一个管理员的操作界面,可以把数据录入到数据库中。有返回登陆按钮,可以选择重新登陆(管理员Or普通用户- 普通用户:一个主界面,负责展示视频和检测。有返回登陆按钮,可以选择重新登陆(管理员Or普通用户

2024-02-27 16:20:26 1575 4

原创 QT C++实现点击按键弹出窗口并显示图片/视频|多窗口应用程序的设计和开发

一般用vs2019开发,创建Qt Widgets Application之后,会自带一个和项目名同名的主窗口类。这个时候需要手动创建另外一个,即新窗口类。要在Qt C++中实现点击按钮后显示新窗口,并在新窗口中显示由主程序生成的图片,你需要创建两个窗口类:主窗口类和图片显示窗口类。Tips:为了突出多窗口的实现,省略了与此无关的代码。函数,检测子线程启动,像主线程发送图片结果信号,函数负责让子窗口对象将图片在其窗口内展示。添加两个窗口类,一个是主窗口类。,另一个是显示图片的窗口类。类的实现(假设图片使用。

2024-02-26 18:05:27 1732

原创 【吴恩达·机器学习】第四章:详解神经网络:推理和训练

🪧在前面几章,我们学习了一些传统的机器学习算法:线性回归和逻辑回归。接下来我们将学习更高级更有效的的机器学习算法:神经网络(Neural Networks;深度学习,deep learning)、决策树(Decision Trees)。这一章主要介绍卷积神经网络,从它的起源、发展、原理、预测和训练等方面进行讲解。也是一个简单的介绍,对神经网络这种算法有初步的认识和较为全面的理解。因为我们知道,深度学习是机器学习的一个大分支,里面的学问还有很多。💁🏻‍♀️接下来让我们开始吧!💐🚂🚂🚂。

2024-02-25 20:19:47 2033

原创 【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)

🪧在前两章中,我们学习了线性回归模型(单变量、多变量)。线性回归模型主要是解决回归任务。我们知道,监督学习(Supervised Learning)中,还有一个重要的任务:分类(classification)。分类问题的主要思路和模型训练过程和回归任务类似。但是在模型的选择和算法思想上还是有一些不同的。我们下面会从线性回归模型引入,介绍适用于分类任务的模型:逻辑回归模型(logistic regression model).并介绍基于它的代价函数、梯度下降。

2024-02-17 11:25:40 1344 1

原创 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)

🪧在前一章中我们学习了单变量线性回归算法.多变量线性回归的整体思想和单变量的是一致的。主要不同在于输入变量(也成为“特征;feature)是多个,于是会引入向量化;将输入变量进行向量化,加快运行速度和简化书写。这一章中当然也是有梯度下降算法来进行模型训练,主要思想已经在前一章中详细讲到,这里只是看看多变量的梯度下降实现与单变量的不同之处、如何判断梯度下降正确运行。关于学习率,前一章中主要介绍了学习率,以及学习率的大小设置不同从而对梯度下降的影响;这一章将详细讲解一下如何设置学习率。

2024-02-16 12:43:20 1320

原创 【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)

🪧第一章我们了解了监督学习和非监督学习,接下来我们将依次进行学习。监督学习任务主要有两个:回归和分类。回归问题的基础算法是:线性回归模型(linear regression)。这一章将对单变量线性回归(linear regression with one varible)进行全面的学习,进而在下一章的多变量线性回归(multiple linear regression)模型中能更好的类比和掌握。🙎🏻‍♀️在这一章你将掌握。

2024-02-15 20:49:06 1840

原创 【计算机视觉】目标检测算法综述 |滑动窗口算法、YOLO、RCNN系列算法

YOLOv1是属于One Stage:端到端目标检测。下面我们对其如何生成以及大致思路进行了解。🌸思路首先将一幅图像分成SxS个网格(grid cell)(相当于将原图像进行SxS的裁剪,得到SxS个子图像,每个子图像进行单目标检测,不过这里的所有子图像是并行处理)。哪个目标物体的中心落在这个网格中,则这个网格负责预测这个目标。更具体来说,一张图片,对应有7×7个lables7x7表示有7x7个子区域,每个lables。

2024-02-03 15:14:43 1721 2

原创 【计算机视觉】万字长文详解:卷积神经网络

如果输入层和隐藏层和之前一样都是采用全连接网络,参数过多会导致过拟合问题,其次这么多的参数存储下来对计算机的内存要求也是很高的解决这一问题,就需要用到——卷积神经网络这是一种理解卷积的角度(至少在吴恩达老师这个教学视频中是),也是我之前没有想到的。其实在该刚开始接受卷积神经网络时,我一直很想弄清卷积的真正含义,为此也学习了一些,后续有打算写一个博客专门讲卷积的含义,敬请期待!需要注意两点池化层的超参数是人工设定的,不需要通过训练从而学习得到。

2024-01-31 14:51:42 1704 1

原创 【吴恩达·机器学习】第一章:机器学习绪论:监督学习和非监督学习

机器学习主要分为监督学习和非监督学习(还有强化学习)。监督学习中又可分为回归问题和分类问题。无监督学习分为聚类问题、异常检测、降维。随后,就单变量的线性回归问题进行的深入的讲解。从回归模型的构建开始(线性模型),到代价函数再到梯度下降算法,进行了生动的讲解。

2024-01-23 12:53:39 1391 1

原创 【Java】JDBC+Mysql+Swing可视化界面实现对学生表的增删改查|练手小项目

本篇博客的核心是基于Mysql数据库,使用JDBC对数据库(这里以简单的学生表为例)进行增删改查,且用Java自带的Swing图像包,实现简单的可视化窗口界面。这里是我用Navicat创建好的学生表:用于处理数据库操作:数据库连接、对会话窗口文件封装的增删改查的方法接口:主窗口界面,主要是四个按键:增删改查,并且定义四个案件的触发事件:创建对应处理操作的会话窗口。

2024-01-23 10:46:19 1021 1

原创 Multisim数电仿真实验——SOS循环序列信号发生器

SOS电路是一种简单而重要的电子电路,用于产生和传输紧急信号。我们将介绍SOS电路的连接思路,包括所需的组件选择以及信号的连接方式。

2023-11-15 18:16:19 1250

原创 图像特征Vol.1:计算机视觉特征度量|第二弹:【统计区域度量】

在前篇图像特征Vol.1:计算机视觉特征度量【纹理区域特征】中,我们说到计算机视觉度量的三类方法,在那篇博客中,我们介绍了纹理区域度量的各个方法。在本篇博客中,我们将继续介绍纹理区域特征的第二类方法:统计区域度量。Let’s Go!

2023-11-01 18:03:31 1369 2

原创 图像特征Vol.1:计算机视觉特征度量|第一弹:【纹理区域特征】

🍊什么是计算机视觉特征?简单来说就是图像特征,对于我们来说,看到一张图片,能很自然的说出和描述图像中的一些特征,但是同样的图片,丢给计算机,只是一个二维矩阵,计算机需要从这个图像中提取计算得到一些数值表示,来描述这个图像所具有的特征:颜色、形状、纹理等。🍊什么是计算机视觉特征度量?(如颜色直方图、梯度直方图、形状描述符),(如图像检索、目标跟踪、人脸识别、物体识别等)的。根据,可以将特征度量分为这三类:🍊特征度量的方法。

2023-10-27 21:36:36 1185

【Golang项目实战】手把手教你写一个备忘录程序-源码02

这个教程将手把手地教你如何用Golang编写一个备忘录程序,并提供完整的源代码。备忘录程序可以帮助你记录重要的事项、任务和提醒事项,以确保你能够及时完成它们。在这个教程中,你将学习如何使用Golang创建一个命令行应用程序,如何使用文件系统存储数据,以及如何实现基本的CRUD(创建、读取、更新、删除)操作。通过这个实战项目,你将学到Golang的基础语法和常用库,以及如何将它们应用到实际项目中。在完成这个项目后,你将具备开发简单命令行应用程序的能力,这对于学习Golang编程或开发其他类型的应用程序都会有所帮助。

2023-05-02

【Golang项目实战】手把手教你写一个备忘录程序-源码01

这个教程将手把手地教你如何用Golang编写一个备忘录程序,并提供完整的源代码。备忘录程序可以帮助你记录重要的事项、任务和提醒事项,以确保你能够及时完成它们。在这个教程中,你将学习如何使用Golang创建一个命令行应用程序,如何使用文件系统存储数据,以及如何实现基本的CRUD(创建、读取、更新、删除)操作。通过这个实战项目,你将学到Golang的基础语法和常用库,以及如何将它们应用到实际项目中。在完成这个项目后,你将具备开发简单命令行应用程序的能力,这对于学习Golang编程或开发其他类型的应用程序都会有所帮助。

2023-05-02

高等数学A:多元函数微分学及其应用重点知识思维导图(考前快速复习版)

高等数学A:多元函数微分学及其应用重点知识思维导图(考前快速复习版) 1.偏导数 2.全微分 3.多元复合函数的微分法 4.偏导数的几何应用 5.多元函数的极值 6.方向导数和梯度

2023-04-13

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除