【最短路算法】第二弹:一文弄懂Bellman-Ford(贝尔曼福特算法)

本文介绍了Bellman-Ford算法,用于解决含有负权边的单源最短路径问题。与Dijkstra算法相比,Bellman-Ford允许边的权重为负数,通过n-1次迭代更新最短路径。文章详细阐述了算法思路,包括初始化、松弛操作和负权回路的检测,并提供了算法模板。此外,还讨论了防止串联问题的方法,并给出了一个使用Bellman-Ford算法解决有边数限制的最短路问题的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

  • 博主简介:努力学习的大一在校计算机专业学生,热爱学习和创作。目前在学习和分享:算法、数据结构、Java等相关知识。
  • 博主主页: @是瑶瑶子啦
  • 所属专栏: 算法 ;该专栏专注于蓝桥杯和ACM等算法竞赛🔥
  • 近期目标:写好专栏的每一篇文章

在这里插入图片描述

💐前言

前天,我们学习了Dijkstra算法:【最短路算法】一篇文章彻底弄懂Dijkstra算法|多图解+代码详解
Dijstra算法用于计算单源正权边的最短路问题
今天学习的贝尔曼福特算法,是用于计算单源,且可含负权边的最短路问题

🌻一、Bellman-Ford算法简介

  • 用于求解单源、有负权边的最短路问题
  • 实现通过m次迭代求出从起点到终点不超过m条边构成的最短路径
  • 其优于Dijkstra的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高。时间复杂度是O(nm)

🍼与迪杰斯特拉算法的区别:

  1. 迪杰斯特拉算法是借助贪心思想,每次选取一个未处理的最近的结点,去对与他相连接的边进行松弛操作;贝尔曼福特算法是直接对所有边进行N-1遍松弛操作。

  2. 迪杰斯特拉算法要求边的权值不能是负数;贝尔曼福特算法边的权值可以为负数,并可检测负权回路。

名词解释:
1. 松弛操作:不断更新最短路径和前驱结点的操作。
2. 负权回路:绕一圈绕回来发现到自己的距离从0变成了负数,到各结点的距离无限制的降低,停不下来

🌻二、算法思路

🛫思路

  1. 初始化源点s到各个点v的路径dis[v] = ∞,dis[s] = 0。

  2. 进行n - 1次遍历,每次遍历对所有边进行松弛操作,满足则将权值更新。
    松弛操作:以a为起点,b为终点,ab边长度为w为例。dis[a]代表源点s到a点的路径长度,dis[b]代表源点s到b点的路径长度。如果满足下面的式子则将dis[b]更新为dis[a] + w。
    dis[b] > dis[a] + w

  3. 遍历都结束后,若再进行一次遍历,还能得到s到某些节点更短的路径的话,则说明存在负环路。

🌱算法模板

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

总结

Bellman-ford算法的思路也很简单,直接就是两层循环,内层循环所有边,外层循环就是循环所有边的次数,这个外层循环次数一般是题目控制的。时间复杂度是O(n*m)

🚏注意点

  • 循环n次之后对所有的边一定满足dist[b]<=dist[a]+w,这个叫”三角不等式”
  • 如果图中经过源点到目的点,有负权回路的话,最短路就不一定存在了
  • 💥迭代次数是有实际意义的,比如我们迭代了k次,那么我们求的最短距离就是从源点点经过不超过k条边走到n号点的最短距离;所以在第n次迭代的时候又更新了某些边的话,就说明路径中一定存在环,并且是负权回路。因为第n次迭代在不存在负权回路的情况下是遍历到第n号点了,后面是没有点了,如果还能更新,说明路径中存在回路,而且是负权回路。

🌻二、算法原理

🥘核心思想: 松弛操作

松弛法(relaxation)是一数学术语,描述的是一些求解方法,这些方法会通过逐步接近的方式获得相关问题的最佳解法。每运用一次松弛法就好像我们“移动”了一次,而我们要做的就是在尽可能少的移动次数内找到最佳解决方案。

👩‍🏫为啥能求最短路?为啥迭代次数有意义?

首先,Bellman算法的核心是松驰,和Dijsktra算法不一样,Djikstra算法是松驰+贪心(,其实质就是在问相应边对面的顶点————“你能够被改进(更短)吗?”)

最短路算法的本质,都是在研究 松驰的顺序!通过不断的松驰,最终求得每个顶点的最短路

  • Dijkstra松驰顺序,是依次松驰距离源点距离最短的未被处理过的点与之相连的顶点。是以一种贪心策略进行松驰的。这种特点导致,一旦某个顶点被处理过(即对与它相连的顶点进行松驰),那么后面该顶点自己被松驰,但是与它相连的顶点不能因为它的松驰而松驰,导致出现不准确的结果。(当边全为正,是不会出现这种情况,因为在松驰与该顶点相连的顶点时,这种算法已经保证了该点已经被松驰到极限)。
  • Bellman算法的核心就是松驰,没有贪心策略,也使它的时间复杂度比较高。因为它是单纯的松驰。首先我们要明白的是:如果处于第n层的节点,在它上一层的即n-1层所以节点的dist已经确定为最终真实值,那么通过一次遍历,第n层节点的dist也能被确定为最终真实值。第一次迭代,获得的信息是:与源点相邻点的真正dist(第二层节点),(其他点的可能仍为无穷大,或者为松驰一次状态);第二次循环,因为第二层的信息已经完全掌握,此次迭代是能确定第三层节点(从源点出发,经过2条边)的点的真实最短距离。(由于遍历的过程中,只完全掌握了第一层,其他节点的dist不能完全确定为最终的dist);如此循环,遍历n-1次,第n层的节点已经遍历完,至此,所有节点的dist都最终确定了(解释了为啥能求最短路)。
  • 经过上面的分析,可以得出,bellman的松驰顺序是的策略是,暴力遍历,无脑松驰。
  • 图解
    在这里插入图片描述

👩‍🏫串联问题

串联问题一般发生在求解有边数限制的最短路问题中(下面有例题),这里我们主要讲一下原理和解决办法

  • 其实理解了上面的过程,串联也好解释。因为在遍历的过程中,虽然说第二层的节点的dist可能任然为初始化的正无穷,但是由于第一层的更新和第二层的更新是同时的,很有可能更新完某个第一层节点,恰好后面去更新与它相连的第二层节点,那么该第二层节点的dist由于第一层节点的更新也更新了(如果该第二层节点同时也是处于第一层位置),看下面例子

  • 防止串联,其实就是防止在第k次循环,更新k+1层节点时,由于k+1层节点的更新和确定,以k+1更新后的结果为基础松驰了与之相连的下一层的某个节点。!
    在这里插入图片描述
    可以发现,如果我们没有备份上一次的dist数组的话,限制从1出发不超过1条边到3最短距离本应该是3,但变成了2。内层循环只迭代了一次,但是在更新的过程中会发生”串联”
    为什么是发生呢?我们来分析一下

    假设每次迭代,遍历所有边,遍历边的顺序如下:

    1→2, 1→3, 2→3

    遍历完第一条边dist[2] = 1,遍历完第二条边dist[3] = 3,遍历第三条边,由于1→2的dist已经确定,在掌握这个信息的前提下,发生串联,dist[3]可以直接松驰,更新为dist[3] = 2,但这不是我们想要的答案。我们想要的是:迭代k次,得到从源点出发,不超过k条边的最短路。
    怎么保证不发生串联呢?我们保证更新的时候只用上一次循环的结果就行。所以我们先备份一下。备份之后backup数组存的就是上一次循环的结果,我们用上一次循环的结果来更新距离。所以我们这样写dist[b]=min(dist[b],backup[a]+w)来更新距离,而不是dist[b]=min(dist[b],dist[a]+w),这样写就会发生上面说的”串联”现象。
    假如我们现在是第k次迭代,那么backup保留的是第k-1次迭代后获得的信息。

    在这个例子中,backup保留的是没有迭代之前(比如站在3的视角,它不会知道1→2的距离,即使1→2的距离在2→3之前更新,这样就不会因为1→2dist的确定,而串联确定2→3)

🌻三、加深理解-题目训练

bellman-ford算法虽然时间复杂度比较高,但它独特的性质(本质上还是松驰顺序),使它非常适合做:有限制边数的最短路。因为上面已经讲到,它的迭代次数是有意义的,第k次迭代,在防止串联的情况下,代表从源点出发,经过不超过k条边,所经过的顶点距离源点的最短距离被百分之百确定好了。

AcWing 853. 有边数限制的最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

👩‍🏫详细注释题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;//最大点数和边数

int n,m,k;//实际点数和边数
int dist[N],last[N];//备份数组,作用是防止串联

struct Edge{
    int a,b,w;//存a->b权重是w的边
}edges[M];//结构体数组,用来存边

void bellman_ford(){
    memset(dist,0x3f,sizeof(dist));//初始化dist数组
    dist[1] = 0;
    
    for(int i = 0; i < k; i ++){
       memcpy(last, dist, sizeof(dist));//备份数组,备份上次迭代的dist数组
       for (int j = 0; j < m; j++){//遍历所有边
            auto e = edges[j];
            dist[e.b] = min(dist[e.b],last[e.a] + e.w);//松驰操作
       }
    }
}

int main(){
     scanf("%d%d%d",&n,&m,&k);//n个顶点,m条边,k是限制边数
     
     for(int i = 0; i < m; i++){
         int a,b,w;
         scanf("%d%d%d",&a,&b,&w);
         edges[i] = {a,b,w};
     }
     
     bellman_ford();
     
     if(dist[n] > 0x3f3f3f3f / 2) puts("impossible");
     else printf("%d\n",dist[n]);
     
    return 0;
}
  • 在上面代码中,是否能到达n号点的判断中需要进行if(dist[n] > INF/2)判断,而并非是if(dist[n] == INF)判断,原因是INF是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,dist[n]大于某个与INF相同数量级的数即可

在这里插入图片描述

贝尔曼-福特算法(Bellman-Ford algorithm)是由Richard Bellman和 Lester Ford Jr. 分别在1950年代提出的图论中一种重要的算法。它主要用于解决单源短路径问题,尤其擅长处理包含负权边(即边的权重可以为负数)的有向图。以下是关于贝尔曼-福特算法的工作原理: 1. **初始化阶段**:首先,给除起始节点之外的所有节点设置一个初始距离值,通常是无穷大(表示尚未找到该节点的短路径),然后将起始节点的距离设为零。 2. **松弛阶段**:接着,算法会遍历图中的每一条边,尝试更新所有节点的距离值。如果经过一条边的起点到终点的路径长度小于之前已经计算出来的起点到终点的路径长度,则更新终点的距离值。这个过程会被反复执行,直到所有边都被遍历过 `|V| - 1` 次(其中 |V| 表示图中有多少个节点)。这个阶段称为“松弛”步骤,因为算法试图放松节点间的距离约束。 3. **检测负权环**:在后一步,再次遍历所有的边。如果仍然能找到一条边,其能进一步减少某个节点的短路径长度,这就意味着图中存在一个负权环(环路中总权重为负),此时算法无法准确计算出所有节点的短路径。 ### 特点与优势: 1. **处理负权边**:贝尔曼-福特算法大的特点是它可以处理带负权边的有向图,这是Dijkstra算法所不具备的优势。 2. **发现负权环**:如果图中存在负权环,算法会在后一次遍历时检测出来,这对于某些特定的应用来说非常有用。 3. **灵活性高**:算法的运行时间和复杂度依赖于图的大小,而不是依赖于边的数量,这意味着即使图中边的数量很多,贝尔曼-福特算法也能有效地工作。 ### 应用场景: - **网络路由**:在互联网和其他通信网络中,贝尔曼-福特算法可以用于计算路由表中的佳路径,特别是在可能存在临时的负成本(比如优惠折扣)的情况下。 - **资源分配问题**:在一些经济模型或资源调度问题中,可能存在成本随着使用量增加而减少的情况(表现为负斜率的成本函数),贝尔曼-福特算法提供了一种解决方案。 ### 相关问题: 1. **为什么在检测负权环的步骤中再次遍历所有边很重要?** 这是因为在一个有负权环的图中,经过环的路径的总代价总是可以从原来的路径代价中减小。这种可能性直到所有边都经过了`|V|-1`次松弛之后才能得到确认。 2. **贝尔曼-福特算法与Dijkstra算法的主要区别是什么?** 主要区别在于处理负权边的能力。Dijkstra算法不适用于带负权边的图,而贝尔曼-福特算法则可以处理这种情况。 3. **在实际应用中如何评估贝尔曼-福特算法的性能?** 性能评估通常涉及考虑图的密度、边的权重分布、是否存在负权环等因素,以及算法在大规模图集上的稳定性、计算效率等指标。
评论 80
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是瑶瑶子啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值