机器学习基石-The theory of generation

大纲

这里写图片描述

Restriction of Break Point

这里写图片描述

我们发现,当 N>k 时,break point k限制了 mH(N) 最大值的大小,也就是说,影响 mH(N) 大小的因素有两个

  • 训练数据 D 的大小
  • break point k(不同的k代表不同的假设)

那么,如果给定N和k,能够证明其mH(N)的最大值的上界是多项式的,则根据霍夫丁不等式,就能用 mH(N) 代替M,得到机器学习是可行的。所以,证明 mH(N) 的上界是 poly(N) ,是我们的目标。
这里写图片描述

Bounding Function

定义

B(N,k) :当break point是k时, mH(N) 的最大取值,这里注意,这里引入上界函数的意义是不考虑移除假设的约束,也就是说不考虑是1D postive intrervals问题还是2D perceptrons问题,而只关心成长函数的上界是多少,从而简化了问题的复杂度。

那么我们的新目标就是证明 B(N,k)poly(N)

结论

这里写图片描述
通过上面的结论,我们可以知道,如果break point存在的话, B(N,k) upper bounded poly(N) ,进一步可以推出, mH(N) 是关于N的多项式阶的。

接下来我们验证一下之前介绍的几种类型的 mH(N) 和break point的关系
这里写图片描述

更一般的,如果我们对于一个模型,不知道他的成长函数,如果我们可以找到他的break point,那么我们就可以推测其成长函数的最大值

A Pictorial Proof

最终,我们通过引入成长函数mH,得到了一个新的不等式,称为Vapnik-Chervonenkis(VC) bound:
这里写图片描述

因为对于2D的感知机,break point是4,所以我们知道他的 mH(N) 是O(N^3),到此为止,我们证明了学习2D的感知机是可行的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值