大纲
Restriction of Break Point
我们发现,当 N>k 时,break point k限制了 mH(N) 最大值的大小,也就是说,影响 mH(N) 大小的因素有两个
- 训练数据 D 的大小
- break point k(不同的k代表不同的假设)
那么,如果给定N和k,能够证明其
Bounding Function
定义
B(N,k) :当break point是k时, mH(N) 的最大取值,这里注意,这里引入上界函数的意义是不考虑移除假设的约束,也就是说不考虑是1D postive intrervals问题还是2D perceptrons问题,而只关心成长函数的上界是多少,从而简化了问题的复杂度。
那么我们的新目标就是证明 B(N,k)≤poly(N)
结论
通过上面的结论,我们可以知道,如果break point存在的话,
B(N,k)
upper bounded
poly(N)
,进一步可以推出,
mH(N)
是关于N的多项式阶的。
接下来我们验证一下之前介绍的几种类型的
mH(N)
和break point的关系
更一般的,如果我们对于一个模型,不知道他的成长函数,如果我们可以找到他的break point,那么我们就可以推测其成长函数的最大值
A Pictorial Proof
最终,我们通过引入成长函数mH,得到了一个新的不等式,称为Vapnik-Chervonenkis(VC) bound:
因为对于2D的感知机,break point是4,所以我们知道他的 mH(N) 是O(N^3),到此为止,我们证明了学习2D的感知机是可行的。