机器学习基石-Nonlinear Transformation

大纲

这里写图片描述

Quadratic Hypotheses

这里写图片描述

线性模型虽然简单, dVC 很小, EinEout ,但是对于某些线性不可分的数据,会导致 Ein 太大,那这样的分类器效果也不是很好。我们如何打破线性模型的限制呢?

Circular Separable

这里写图片描述

虽然上面的数据点线性不可分,但是他可以用一个圆圈分开,我们从这里得到启发,是否我们可以设计Circular-PLA,Circular-Regression算法来进行分类

Circular Separable and Linear Separable

这里写图片描述

这种 xnzn 的转换可以看成是x空间的点映射到z空间中去,而在z域中,可以用一条直线进行分类,也就是从x空间的圆形可分映射到z空间的线性可分。z域中的直线对应于x域中的圆形。因此,我们把 xnzn 这个过程称之为特征转换(Feature Transform)。通过这种特征转换,可以将非线性模型转换为另一个域中的线性模型。

这里写图片描述

已知x域中圆形可分在z域中是线性可分的,那么反过来,如果在z域中线性可分,是否在x域中一定是圆形可分的呢?答案是否定的。由于权重向量w取值不同,x域中的hypothesis可能是圆形、椭圆、双曲线等等多种情况。

General Quadratic Hypothesis Set

对于更加一般的二次假设,还应该包括一次项和常数项

这里写图片描述

这样子 Z 空间中一条直线,可以包括X空间的所有二次曲线,所有的直线,或者点。

Nonlinear Transform

Good Quadratic Hypothesis

这里写图片描述

如果我们的目标是学习一个好的二次假设,那么我们可以把目标转化为在 Z 域中寻找一个好的分类直线

The Nonlinear Transform Steps

我们可以分为以下几步做

这里写图片描述

  • 把原始数据从X空间通过一个函数 ϕ(x) 转化到 Z 空间,即{(xn,yn)}{(zn,yn)}

    • 通过一个好的线性分类算法 A ,学习好的参数w̃ 
    • 返回 g(x)=sign(w̃ Tϕ(x))
    • 总结一下,非线性模型 = 非线性变换 + 线性模型

      Price of Nonlinear Transform

      虽然非线性变换,看起来很强大。好像很强大,让我们来分析非线性变换的代价

      Computation/Storage Price

      这里写图片描述

      对于Q阶多项式,我们需要的时间复杂度和空间复杂度都是 O(Qd) ,很难去计算和存储

      Model Complexity Price
      • d̃ +1=O(Qd)
      • 自由变量的数量 = d̃ +1dVC(HϕQ)
      • dVC(HϕQ)d̃ +1

      所以 Q 越大,dVC越大

      Generalization Issue

      这里写图片描述

      我们又回到机器学习最本质的两个问题的权衡了,所以选择一个合适的 Q 很重要

      Structured Hypothesis Sets

      Structured Hypothesis Sets

      这里写图片描述

      • 高阶次的假设包含低阶次的假设
      • 高阶次的假设的VC维不小于低阶次的VC维
      • 高阶次假设的训练误差不大于低阶次假设的训练误差

      由上图可以看出,随着dVC的增大, Ein 逐渐减少,模型复杂度逐渐增大, Eout 先变小后增大

      在实践中,我们应该先尝试好的模型,看 Ein 是否足够小,如果不够,则增大假设空间的阶数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值