推荐几部和「隐秘的角落」同样好看的电视剧

点击上方蓝字关注前端真好玩,从此前端进阶不再难

最近这部剧特别的火,豆瓣评分 8.9,足以证明这不是一部花瓶剧。

这个剧具体也就不讲了,如果你没有看过那么笔者强烈推荐你在周末刷一遍,反正 12 集看的挺快。今天重点是推荐几部笔者认为同样好看的剧。

我们与恶的距离

台剧其实出好剧的几率挺多,这部剧笔者当时看的时候就看的挺爽,豆瓣评分到了惊人的 9.5。

品味新闻台编辑台主管宋乔安(贾静雯饰)的儿子是二年前李晓明无差别杀人事件的罹难者,先生刘昭国(温升豪饰)是网络先驱报的创办人,夫妻在儿子走后因现实磨难渐行渐远准备离婚,但11岁的女儿行为却日渐失序,为了女儿终逼二人必须重新检视自己身上的伤口。李晓明的辩护律师王赦(吴慷仁饰),在李晓明死刑定案之后,仍想要了解其犯罪动机,锲而不舍的他,开启了众人命运的连结。

无证之罪

如果你喜欢隐秘的角落,一定也会喜欢这部剧,豆瓣评分 8.2。

奔忙在都市森林中的蚁族白领,为了保护自己心爱的姑娘,无意间卷入了一场杀人案,成为凶案嫌犯。原本死水般的庸碌生活被瞬间打破,在警方和黑帮的双重追查下,求生的本能使人性在在危机中慢慢发酵出危险的味道。  事业成功、家庭美满的前法医、一夜之间失去了妻儿的踪影,为了寻找到消失的家人,他独自一人苦寻十年,最后却选择了用一场连环杀戮为自己找到答案,即使答案是他无法承受的残酷。  暴躁、偏激却头脑灵敏的“坏警察”,被世俗所流放。想要重归警队,他必须去解开一道无人能解的谜,让作恶的人为他们的罪孽买单。然而,当真相摆在他面前的时候,他却无法证明自己的推理。

白夜追凶

已经等第二部三年了,足以证明他是部好剧,豆瓣评分 9.0。

一场灭门惨案,让原本逍遥浪荡的关宏宇成了在逃的通缉嫌犯。身为刑侦支队队长的双胞胎哥哥关宏峰,誓要查出真相,但出于亲属回避的原则,警队禁止关宏峰参与灭门案的调查工作。关宏峰义愤辞职。调任了代支队长的周巡处于破案压力,也为了追寻关宏宇的下落,设计让离职的关宏峰以“编外顾问”的身份继续参与各大重案要案的调查。而警队所有人都被隐瞒了。由于罹患“黑暗恐惧症”,白天和黑夜出现在警队的“顾问关宏峰”,其实是由孪生兄弟二人白夜分饰,性格迥异的兄弟两人在警队中马脚不断,背负着随时被周巡及各路人马发现的危险,一路侦破了各种大案要案,目的只是想伺机调阅灭门案的案卷查出真相,以还清白……

秘密森林

韩剧,豆瓣评分 9.2,最近要出第二部了。具体剧情有点忘了,但是记忆中是相当好看的,从那以后笔者就特别爱看韩国的悬疑及警察类的电视剧。

讲述了儿时经历脑部手术失去情感神经的天才检察官黄时木(曹承佑 饰)8年来在腐败的检查厅内一直孤军奋战,直到某天一具诡异的尸体让他卷入了一场恐怖的连环杀人事件。裴斗娜饰演的女警韩汝真正义感十足,在经过严苛选拔进入核心重案组后便开始协助黄时木调查此案。


- END -

欢迎同仁投稿,扫描下方二维码联系即可

转载同样可以联系下方二维码获取授权

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是基于Python对电影《隐秘角落》影评数据的分析代码。这里使用了pandas、matplotlib、jieba等库进行数据处理、可视化和分词等操作。 ```python # 导入所需库 import pandas as pd import matplotlib.pyplot as plt import jieba from wordcloud import WordCloud # 读取数据 data = pd.read_csv('yinmi.csv', header=None, names=['user', 'score', 'comment']) # 数据预处理 data = data.dropna() # 删除空值 data['comment'] = data['comment'].str.replace('\n', '') # 删除换行符 data['score'] = data['score'].astype(int) # 转换评分为整数类型 # 查看数据前几行 print(data.head()) # 绘制评分分布直方图 plt.hist(data['score'], bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], edgecolor='black') plt.xlabel('Score') plt.ylabel('Count') plt.title('Score Distribution') plt.show() # 分词并统计词频 comments = ' '.join(data['comment'].tolist()) words = jieba.lcut(comments) word_count = {} for word in words: if len(word) >= 2: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 # 生成词云 wc = WordCloud(background_color='white', max_words=200, font_path='simhei.ttf') wc.generate_from_frequencies(word_count) plt.imshow(wc) plt.axis('off') plt.show() ``` 在上述代码中,我们首先读取了名为`yinmi.csv`的影评数据,然后对数据进行了预处理,包括删除空值、删除换行符和转换评分为整数类型等操作。接着,我们使用matplotlib库绘制了评分分布直方图,可以看出该电影的评分主要集中在7-9分之间。最后,我们使用jieba库对影评进行了分词,并统计了词频,然后利用wordcloud库生成了词云,可以看出该电影的观众对导演、演员、剧情等方面都有着不同的评价和看法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值