机器翻译评价——COMET环境安装(GPU版本)

COMET,一个用于评价机器翻译性能的工具。
github地址:https://github.com/Unbabel/COMET

1. 环境安装

官方教程:
COMET quick installation

1.1 关键环境

环境版本备注
gcc10.5.0任意版本即可
CUDA12.1任意版本满足PyTorch要求即可
Python3.8.20可以通过Annaconda或者源码安装
unbabel-comet2.2.4默认最新版本
torch2.4.1默认安装版本
pytorch-lightning2.4.0默认安装版本

gcc、CUDA、Python、torch的具体安装都可参考我的另一篇文章fairseq-0.12.2多机训练环境搭建

1.2 安装Python

(可选通过Annaconda)

#创建Python环境
conda create -n comet python=3.8 -y 
#启动Python环境
conda activate comet

comet为conda创建的环境名称

1.3 安装unbabel-comet

按照官方要求安装

pip3 install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple/
pip3 install unbabel-comet -i https://mirrors.aliyun.com/pypi/simple/

1.4 测试 Unbabel/wmt22-comet-da

comet-score -s src.zh -t trans.en -r ref.en --model Unbabel/wmt22-comet-da

相关参数说明请跳转到2.1
运行结果:
comet-score运行结果1
可以看到需要连接huggingface.co

1.4.1 下载Unbabel/wmt22-comet-da

下载地址:https://huggingface.co/Unbabel/wmt22-comet-da

  1. 放在默认路径下~/.cache/torch/unbabel_comet/
  2. 通过–model直接指定.ckpt文件路径

建议使用第2种,启动速度会快很多。第1种启动每次都会访问huggingface.co,无法连接则启动很慢。

comet-score -s src.zh -t trans.en -r ref.en --model ./wmt22-comet-da/checkpoints/model.ckpt

comet-score运行结果1
需要xlm-roberta-large资源

1.4.2 下载xlm-roberta-large

下载地址:https://huggingface.co/FacebookAI/xlm-roberta-large

放在当前运行目录下,后再次运行,便可正常运行

comet-score -s src.zh -t trans.en -r ref.en --model ./wmt22-comet-da/checkpoints/model.ckpt

有一个警告

Lightning automatically upgraded your loaded checkpoint from v1.8.3.post1 to v2.4.0. To apply the upgrade to your files permanently, run `python -m pytorch_lightning.utilities.upgrade_checkpoint wmt22-comet-da/checkpoints/model.ckpt`

在这里插入图片描述
注意千万不要降版本,否则会遇到很多坑,真心劝告。

2. COMET运行说明

2.1 COMET参数说明

comet-score -h

在这里插入图片描述
需要关注的:

参数说明
-s原文文件
-t机器翻译系统生成的译文文件,可选多个
-r参考译文文件,如需要,例如Unbabel/wmt22-comet-da
–gpusgpu使用的个数,0表示使用CPU,1表示使用GPU,其余不建议
–to_json输出结果文件路径,输出格式为json
–model模型名或模型的路径名(.ckpt),建议使用模型的路径名(.ckpt)方式

2.2 COMET运行结果

comet-score -s src.zh -t trans.en -r ref.en --model ./wmt22-comet-da/checkpoints/model.ckpt --to_json ./output.json
  1. 屏幕打印
    屏幕打印

  2. json文件
    json文件

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莽夫搞战术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值