利用机器化学家平台解决化学实验中的关键问题
摘要
随着物理和化学研究对象的日益复杂化和高维化,传统研究范式因局限于“穷举”、“试错”和“重复”等手段,常常在庞大的化学空间中止步于局部最优。中国科技大学的机器化学家平台突破了这一限制,利用大数据与智能模型的双驱动,实现了化学合成、表征和测试的全流程智能化。该平台通过先进的智能化学大脑,结合机器学习、量子化学和贝叶斯优化等方法,从海量数据中汲取知识并制定实验方案,显著提升了化学研究的效率和创新能力。本文旨在利用机器化学家平台提供的数据集,通过数据分析和建模的方法解决五个关键问题,包括数据预处理、预测模型建立、特征指标选择和模型优化,最终提高化学实验的全局优化能力,并提供准确的物理化学性质和分子类别的预测结果。
在本文中,探索了分子唯一标识符(ID)与特定物理化学性质(y2)之间的关系。首先进行数据预处理,包括缺失值填充、异常值检测与处理以及特征工程,确保数据质量。发现ID与y2呈现明显的非线性关系,因此采用了非线性模型。通过线性回归初步探索了线性关系,随后采用了决策树和随机森林等更复杂的模型。数据集分为训练集和测试集,模型性能通过均方误差评估,初步模型表现良好。
随后在解决问题二的过程中,我们对数据进行了预处理,以确保数据的准确性和可靠性。首先,我们进行了数据预处理。随后,进行了特征工程,从数据中提取出与目标变量最相关的十条特征,以用于后续预测模型的构建。接着,我们通过绘制相关性矩阵图对特征之间的相关性进行了分析,确定了与目标变量最相关的特征,并进行了异常值的可视化展示,以更好地理解数据的分布情况。在此基础上,我们采用线性回归模型对数据进行训练,并对模型进行了预测和评估。最终的结果表明