持续补充
Pyecharts是一款将Python与Echarts结合的强大的数据可视化工具,本篇主要介绍Pyecharts中基本图形的实现。
| 图表类型 | 图表 |
| 基本图表 | 日历图(Calendar) |
| 漏斗图(Funnel) | |
| 仪表盘(Gauge) | |
| 关系图(Graph) | |
| 水球图(Liquid) | |
| 平行坐标系(Parallel) | |
| 饼图(Pie) | |
| 极坐标系(Polar) | |
| 雷达图(Radar) | |
| 桑基图(Sankey) | |
| 旭日图(Sunburst) | |
| 主题河流图(ThemeRiver) | |
| 词云图(WordCloud) | |
| 直角坐标系图表 | 柱状图/条形图(Bar) |
| 箱形图(Boxplot) | |
| 涟漪特效散点图(EffectScatter) | |
| 热力图(HeatMap) | |
| K线图(Kline/Candlestick) | |
| 折线/面积图(Line) | |
| 象形柱状图(PictorialBar) | |
| 散点图(Scatter) | |
| 层叠多图(Overlap) | |
| 树形图表 | 树图(Tree) |
| 矩形树图(TreeMap) | |
| 地理图表 | 地理坐标系(Geo) |
| 地图(Map) | |
| 百度地图(BMap) | |
| 3D图表 | 3D柱状图(Bar3D) |
| 3D折线图(Line3D) | |
| 3D散点图(Scatter3D) | |
| 3D曲面图(Surface3D) | |
| 三维地图(Map3D) | |
| 组合图表 | 并行多图(Grid) |
| 顺序多图(Page) | |
| 选项卡多图(Tab) | |
| 时间线轮播多图(Timeline) |
1. 线形图
先来看一个最简单的线形图,具体代码如下:
from pyecharts.charts import Line
from pyecharts import options as opts
line=Line(init_opts=opts.InitOpts(width='500px', height='300px'))
line.add_xaxis(['1','2','3','4','5','7'])
line.add_yaxis('数量',[5,8,0,3,4,6,7])
line.render_notebook()
其图像如下:

这里有一点需要说明,如果将上述代码中的line.add_xaxis()语句改为如下语句:
line.add_xaxis([1,2,3,4,5,7])#将字符串类型换成int型
则形成的图形如下 :

很明显,这里将add_xaxis()把数据当作了索引。
2.柱状图
from pyecharts.charts import Bar
from pyecharts import options as opts
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]
data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7]
data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7]
bar=Bar(init_opts=opts.InitOpts(width='600px', height='400px'))
bar.add_xaxis(columns)
bar.add_yaxis("降水量", data1,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(name='平均值',type_='average')]))
bar.add_yaxis("蒸发量", data2)
bar.render_notebook()

这里用markline_opts给【降水量】数据添加了一条平均值线。
3.饼图
from pyecharts.charts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie()
pie.add('饼图示例',data_pair=[list(z) for z in zip(attr,v1)])
pie.render_notebook()

饼图的变形1-环形图
from pyecharts.charts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie()
#radius用来设置内圆半径和外圆半径,除了指定具体的数值外,还可以用百分比来代替
pie.add('饼图示例',data_pair=[list(z) for z in zip(attr,v1)],radius=[120,180])
pie.render_notebook()

饼图变形2-南丁格尔玫瑰图
from pyecharts.charts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie()
pie.add('饼图示例',data_pair=[list(z) for z in zip(attr,v1)],rosetype='radius')
pie.render_notebook()

4.雷达图
from pyecharts.charts import Radar
from pyecharts.faker import Faker #随机生成数据
from pyecharts import options as opts
radar=Radar()
index=Faker.choose()
values_1=Faker.values()
values_2=Faker.values()
radar.add_schema(schema=[opts.RadarIndicatorItem(name=item) for item in index])
radar.add('雷达图-系列1',data=[values_1])
radar.add('雷达图-系列2',data=[values_2],color=['blue'])
radar.render_notebook()

5.仪表板
from pyecharts import options as opts
gauge=Gauge()
gauge.add('仪表板',min_=0,max_=100,data_pair=[['成功率',80]],
detail_label_opts=opts.GaugeDetailOpts(font_size=30,color='red',
offset_center=[0,-40],formatter="{value}%"))
gauge.render_notebook()

6. 地图
from pyecharts.charts import Map
from pyecharts import options as opts
map1=Map()
map1.add('地图',data_pair=[["安徽",100],['湖北',200],['四川',150]])
map1.render_notebook()

from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.faker import Faker
m=Map()
m.add('map_示例',data_pair=[list(z) for z in zip(Faker.provinces,Faker.values())])
m.set_global_opts(title_opts=opts.TitleOpts(title="Map-基本示例"), visualmap_opts=opts.VisualMapOpts())
m.render_notebook()

4万+

被折叠的 条评论
为什么被折叠?



