数据读取
数据扩增方法
Pytorch读取赛题数据
2.2图像读取:
在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。
2.2.1 Pillow
Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。
Pillow的官方文档:https://pillow.readthedocs.io/en/stable/
from PIL import Image,imageFilter #导入Pillo库
im =Image.open(cat.jpg’) # 读取图片
from PIL import Image, ImageFilter
im = Image.open(‘cat.jpg’)
#应用模糊滤镜
im2 = im.filter(ImageFilter.BLUR)
im2.save(‘blur.jpg’,‘jpeg’)
from PIL import Image
#打开一个jpg图像文件,注意是当前路径
im = Image.open(‘cat.jpg’)
im.thumbnail((w//2,h//2))
im.save(‘thumbnail.jpg’,‘jpeg’)
2.2.2. OpenCV
OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。
OpenCV包含了众多的图像处理的功能,OpenCV包含了你能想得到的只要与图像相关的操作。此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。
OpenCV官网:https://opencv.org/
OpenCV Github:https://github.com/opencv/opencv
OpenCV 扩展算法库:https://github.com/opencv/opencv_contrib
import cv2 #导入Opencv库
img = cv2.imread(‘cat.jpg’)
#Opencv默认颜色通道顺序是BRG,转换一下
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
import cv2 #导入Opencv库
img = cv2.imread(‘cat.jpg’)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#转换为灰度图
#Canny边缘检测
edges = cv2.Canny(img, 30, 70)
cv2.imwrite(‘canny.jpg’, edges)
2.3 数据扩增方法
数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。
2.3.1数据扩增为什么有用?
1、在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
2、其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。
2.3.2 有哪些数据扩增的方法
数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
对于图像分类,数据扩增一般不会改变标签;
对于物体检测,数据扩增会改变物体坐标位置;
对于图像分割,数据扩增会改变像素标签。
#以torchvision为例,常见的数据扩增方法包括:
1)transforms.CenterCrop 对图片中心进行裁剪
2)transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
3)transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
4)transforms.Grayscale 对图像进行灰度变换
5)transforms.Pad 使用固定值进行像素填充
6)transforms.RandomAffine 随机仿射变换
7)transforms.RandomCrop 随机区域裁剪
8)transforms.RandomHorizontalFlip 随机水平翻转
9)transforms.RandomRotation 随机旋转
10)transforms.RandomVerticalFlip 随机垂直翻转
#在本次赛题中,赛题任务是需要对图像中的字符进行识别,因此对于字符图片并不能进行翻转操作。比如字符6经过水平翻转就变成了字符9,会改变字符原本的含义。
2.3.2 常用的数据扩增库
1、torchvision
pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等;
2、imgaug
mgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快;
3、albumentations
是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快。
2.4 Pytorch 读取数据
由于本次赛题我们使用Pytorch框架讲解具体的解决方案,接下来将是解决赛题的第一步使用Pytorch读取赛题数据。
在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。
import os,sys,glob,shutil,json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):
def __init__(self,img_path,img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform =transform
else:
self.transform = None
def __getitem__(self,index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
# 原始SVHN中类别10为数字0
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5-len(lbl)) *[10]
return img,torch.from_numpy(np.arry(lbl[:5]))
def __len__(self):
return len(self.img_path)
train_path = glob.glob(r'D:\study\cv\mchar_train\*.png')
train_path.sort()
train_json = json.load(open(r'D:\study\cv\mchar_train.json'))
train_label = [train_json[x]['label'] for x in train_json]
data = SVHNDataset(train_path, train_label,
transforms.Compose([
# 缩放到固定尺寸
transforms.Resize((64,128)),
#随机颜色变换
transforms.ColorJitter(0.2,0.2,0.2),
#加入随机旋转
transforms.RandomRotation(5),
#将图片转换为pytorch 的tesntor
# transforms.ToTensor(),
#将图像像素进行归一化
#transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
]))
通过上述代码,可以将赛题的图像数据和对应标签进行读取,在读取过程中的进行数据扩增,效果如下所示:
接下来我们将在定义好的Dataset基础上构建DataLoder:
Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
DataLoder:对Dataset进行封装,提供批量读取的迭代读取
class SVHNDataset(Dataset):
def __init__(self,img_path,img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform =transform
else:
self.transform = None
def __getitem__(self,index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
# 原始SVHN中类别10为数字0
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5-len(lbl)) *[10]
return img,torch.from_numpy(np.arry(lbl[:5]))
def __len__(self):
return len(self.img_path)
train_path = glob.glob(r'D:\study\cv\mchar_train\*.png')
train_path.sort()
train_json = json.load(open(r'D:\study\cv\mchar_train.json'))
train_label = [train_json[x]['label'] for x in train_json]
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path,train_label,
transforms.Compose([
transforms.Resize((65,128)),
transforms.ColorJitter(0.3,0.3,0.2),
transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
])),
batch_size = 10, #每批样本个数
shuffle=False, #是否打乱顺序
num_workers=10 #读取的线程个数
)
for data in train_loader:
break