深度学习本地环境配置步骤(pytorch、tensorflow框架)

深度学习本地环境配置步骤(pytorch、tensorflow框架)

安装步骤

  1. Vscode (可在anaconda里面install或者launch,先vs再cuda)
    在这里插入图片描述

  2. Anaconda

  3. Cuda(前提 删掉本机的显卡驱动)

  4. Cudnn

  5. Pytorch(tensorflow)

  6. pycharm添加运行环境

3、4、5应考虑版本
在anaconda中安装pytorch的命令(pytorch与cuda的版本):https://pytorch.org/get-started/previous-versions/

其他整理可以借鉴的网站:
1.cuda与本机对应版本选择参考下文,本机选择cuda9.0
https://blog.csdn.net/qq_40992227/article/details/113705112

2.Windows安装tensorflow,配置vs2013, anaconda3.4, cudn9.0,cudnn7.0和pycharm

https://www.cnblogs.com/x739400043/p/9340919.html

3.tensorflow pytorch 与cuda cudnn各版本关系
https://blog.csdn.net/caiguanhong/article/details/112184290

4.Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)
https://blog.csdn.net/monk1992/article/details/89514645?utm_medium=distribute.wap_relevant.none-task-blog-baidujs_title-2

5.需要注意的是,安装CUDA和VS时,应该先安装VS,再安装CUDA。
https://blog.csdn.net/qq_45792899/article/details/108789898

6.Anaconda+pycharm+tensorflow安装和环境配置(win10)
https://blog.csdn.net/qq_43629743/article/details/105399552

7.python3.7+Anaconda3+CUDA10.0+cuDNN7.5.0 安装TensorFlow-GPU1.13.1详细步骤(卸载本机cuda)
https://blog.csdn.net/CH_monsy/article/details/109130026

8.检验是否能用gpu
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值