【OpenCV进阶】从深度学习环境搭建到Tensorflow行人识别,超详细!

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨
📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852
📢:文章若有幸对你有帮助,可点赞 👍 收藏 ⭐不迷路🙉
📢:内容若有错误,敬请留言 📝指正!原创文,转载请注明出处


一、Tensorflow在win10 下的安装教程-Gpu版本

1.安装环境

在这里插入图片描述

1.ananconda:2021.05
2.python:3.7
3.GPU加速包
仅用于兼容英伟达GPU,如果报,可以忽略这两句。

cudnn:8.0
cudatoolkit:11.1

4.tensorflow:2.1
5.pycharm:2021.2

2.安装ananconda

3.安装python

创建一个名为TF2.1的虚拟环境,用python3.7版本

conda create -n TF2.1 python==3.7
在这里插入图片描述

4.安装英伟达的SDK10.1版本

conda activate TF2.1
conda install cudatoolkit=10.1
在这里插入图片描述

5.安装英伟达深度学习软件包7.6版本

conda install cudnn=7.6

如果安装上面两个报错的话,说明硬件不支持,那就直接跳过,直接安装tensorflow

6.安装TensorFlow

参考博客:
手把手教你如何基于Anaconda安装Tensorflow(Windows和Linux两种版本)

二、Tensorflow对象检测API安装与测试

1.安装opencv4版本

下载opencv4版本的开发包,具安装和配置方法参考:opencv学习-第1节:环境配置与搭建

2.安装opencv-python

cmd中输入:

pip install opencv-python

在这里插入图片描述
检查,cmd输入:

python

3.安装tensorflow

cmd中输入:
默认为CPU版本

pip install tensorflow

CPU版本,显卡为英伟达

pip install tensorflow-GPU

检查是否安装成功:
cmd输入:

python
import tensorflow as tf

如果没有输出,则表明安装成功,如下图所示。
在这里插入图片描述

测试opencv是否安装成功
cmd输入:

import cv2 as cv
cv.imread (“D:/images/hand.jpg”)

在这里插入图片描述

4.安装与基本使用pycharm

安装参考博客:超详细最新版pycharm安装教程,小白都能看懂

注意:在cmd中安装的可以作为pycharm的第三方依赖进行导入和使用。

然后将安装好的opencv-python和TensorFlow导入到pycharm中。
最后输入以下代码测试

import cv2 as cv
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
a = tf.constant(3.0)
b = tf.constant(4.0)
c = tf.add(a, b)
sess = tf.compat.v1.Session();
print(sess. run(c))
src = cv. imread("D:/images/hand.jpg")
cv. imshow("image", src)
cv. waitKey(0)
cv. destroyAllWindows()

在这里插入图片描述

5.安装TensorFlow第三方依赖包

cmd依此输入:

pip install Cython
pip install contextlib2
pip install pillow
pip install lxml
pip install jupyter
pip install matplotlib

6.安装TensorFlow的models

1.先安装git
在这里插入图片描述
然后将models文件下载到D盘中。
打开git然后输入:

git clone https://github.com/tensorflow/models.git  D:tensorflow/models

在这里插入图片描述

2.再安装protobuf
https://github.com/protocolbuffers/protobuf/releases/tag/v3.4.0
解压到D盘中。
在这里插入图片描述
然后cmd中输入:

D:\tensorflow\models\research>D:\protoc-3.4.0-win32\bin\protoc object_detection/protos/*.proto --python_out=.

就会将proto文件生成python,如下图所示:
在这里插入图片描述
测试是否安装成功,cmd输入:

cd /d D:
D:\tensorflow\models\research>python object_detection/builders/model_builder_test.py

报错:
在这里插入图片描述
解决方法:打开cmd并输入以下命令:

pip install absl

报错:

在这里插入图片描述
解决办法,cmd输入:

python -m pip install --upgrade pip -i https://pypi.douban.com/simple

在这里插入图片描述
新建一个pth文件,写入下面的路径:

D:\tensorflow\models\research
D:\tensorflow\models\research\slim
D:\tensorflow\models\research\object_detection

存放在C:\Users\Administrator\AppData\Local\Programs\Python\Python36\Lib\site-packages下

在这里插入图片描述
解决办法,cmd输入:

pip install tf-models-official

可是结果依然报错,有大佬看到了还望指教!!!

cmd中输入:
cd /d D:/tensorflow/models/research
python object_detection/dataset_tools/create_pascal_tf_record.py --label_map_path=D:/tensorflow/pedestrian_train/data/label_map.pbtxt --data_dir=D:/pedestrian_data --year=VOC2012 --set=train --output_path=D:/1/pascal_train.record

cd /d D:/tensorflow/models/research
object_detection/model_main.py --pipeline_config_path=D:/tensorflow/pedestrian_train/models/ssd_mobilenet_v2_coco.config --model_dir=D:/tensorflow/pedestrian_train/models/train --num_train_stps=1000 --sample_1_of_n_eval_examples=1 --alsologstderr

如何切换opython参考:
如何切换Python版本–基于window10系统

参考:Tensorflow Object Detection API配置(window10 + CPU)
Notepad++下载与安装步骤(图文详解)
Could not find a version that satisfies the requirement (from versions: ) No matching distribution
ModuleNotFoundError: No module named ‘google’
参考:link1
link2
link3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌小超

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值