Ollama 安装

Ollama 支持多种操作系统,包括 macOS、Windows、Linux 以及通过 Docker 容器运行。

Ollama 对硬件要求不高,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。

  • CPU:多核处理器(推荐 4 核或以上)。
  • GPU:如果你计划运行大型模型或进行微调,推荐使用具有较高计算能力的 GPU(如 NVIDIA 的 CUDA 支持)。
  • 内存:至少 8GB RAM,运行较大模型时推荐 16GB 或更高。
  • 存储:需要足够的硬盘空间来存储预训练模型,通常需要 10GB 至数百 GB 的空间,具体取决于模型的大小。
  • 软件要求:确保系统上安装了最新版本的 Python(如果打算使用 Python SDK)。

Ollama 官方下载地址:Download Ollama on macOS

我们可以根据不同的系统下载对应的包。

1、Windows 系统安装

打开浏览器,访问 Ollama 官方网站:Download Ollama on macOS,下载适用于 Windows 的安装程序。

下载地址为:https://ollama.com/download/OllamaSetup.exe

下载完成后,双击安装程序并按照提示完成安装。

验证安装

打开命令提示符或 PowerShell,输入以下命令验证安装是否成功:

ollama --version

如果显示版本号,则说明安装成功。

更改安装路径(可选)

如果需要将 Ollama 安装到非默认路径,可以在安装时通过命令行指定路径,例如:

OllamaSetup.exe /DIR="d:\some\location"

这样可以将 Ollama 安装到指定的目录。

2、macOS 系统安装

打开浏览器,访问 Ollama 官方网站:Download Ollama on macOS,下载适用于 macOS 的安装程序。

下载地址为:https://ollama.com/download/Ollama-darwin.zip

下载完成后,双击安装包并按照提示完成安装。

安装完成后,通过以下命令验证:

ollama --version

如果显示版本号,则说明安装成功。

3、Linux 系统安装

Linux 下可以使用一键安装脚本,我们打开终端,运行以下命令:

curl -fsSL https://ollama.com/install.sh | bash

安装完成后,通过以下命令验证:

ollama --version

如果显示版本号,则说明安装成功。

4、Docker 安装

如果你熟悉 Docker,也可以通过 Docker 安装 Ollama。

官方 Docker 镜像 ollama/ollama 可在 Docker Hub 上获取:https://hub.docker.com/r/ollama/ollama

拉取 Docker 镜像:

docker pull ollama/ollama

运行容器:

docker run -p 11434:11434 ollama/ollama

访问 http://localhost:11434 即可使用 Ollama。

### 如何安装 Ollama #### Windows 系统安装指南 对于 Windows 用户,可以通过官方提供的图形化安装向导轻松完成部署: - 访问 Ollama 官方网站并获取最新版的 `OllamaSetup.exe` 文件[^2]。 - 双击执行该文件,并遵循屏幕上的指示逐步操作直至结束。通常情况下,默认选项足以满足大多数需求;不过如果有特殊要求也可以在此阶段做出调整。 为了确保命令行工具能够正常工作,在某些场景下可能还需要手动更新 PATH 环境变量来包含新软件的位置:即 `C:\Users\{用户名}\AppData\Local\Programs\Ollama` 目录下的可执行文件路径。 最后一步是检验整个过程是否顺利完成——只需打开任意一个终端窗口(比如 PowerShell 或 CMD),键入 `ollama --version` 并回车查看是否有预期中的版本号输出即可确认一切就绪。 #### macOS 系统安装说明 面向 Mac 设备用户的指导则更为简洁明了: 通过内置的 Shell 工具可以直接在线拉取必要的资源包来进行本地化的设置流程。具体做法如下所示: ```bash /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" && \ echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> /Users/{username}/.zprofile && \ eval "$(/opt/homebrew/bin/brew shellenv)" ``` 上述指令首先会引导 Homebrew 的自动装载机制,随后将其初始化语句追加到当前登录账号所对应的启动配置文件里以便日后调用更加便捷高效。当然这一步骤并非强制性的前置条件而是推荐的最佳实践之一。 紧接着便是正式引入目标应用程序本身: ```bash brew install ollama/tap/ollama ``` 此时应当已经能够在任何位置顺利发起对 Ollama 功能特性的探索之旅啦!同样地,利用简单的测试命令如前所述可以迅速判断此次集成活动的成功与否。 #### Linux 发行版通用方案 考虑到 Linux 社区内部存在着众多分支版本之间的兼容性考量因素,这里给出了一套广泛适用的方法论供参考借鉴: 最直接的方式莫过于借助于远程服务器端预先打包好的一键式解决方案实现自动化装配目的[^3]: ```bash curl -fsSL https://ollama.com/install.sh | sh ``` 这条单行代码背后隐藏着一系列精心编排的动作序列,从依赖关系解析到最后的服务激活环节都得到了妥善处理,极大降低了人为干预的风险成本的同时也提高了整体效率水平。 另外值得注意的是,在特定环境下还可以考虑采用 ModelScope 提供的安全镜像源加速下载速度以及后续离线模式的支持能力[^5]: ```bash modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux --revision v0.5.4 cd ollama-linux/ chmod +x *.sh ./install.sh ``` 这段脚本片段展示了如何先期准备所需材料再依据实际情况灵活运用现有资产达成最终目标的过程。 #### Docker 方案概述 除了传统的主机层面的操作之外,容器技术也为广大开发者带来了全新的视角和可能性。基于 Docker 构建的应用实例不仅便于移植迁移而且易于维护管理,因此也被纳入到了本次讨论范围内作为补充选项呈现给读者朋友们了解学习。 具体的实施细节请参照官方文档中有关 Containerized Deployment 的章节部分获得更详尽的信息指引。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alden_ygq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值