认知无线电
随着无线通信的快速发展,用户对通信质量的要求越来越高,同时无线设备的大幅度增长,使得频谱资源显得更加重要。认知无线电(Cognitive Radio, CR)技术被当作解决频谱资源紧张、提高频谱利用率的强有力的技术,是下一代通信技术的重要组成成分。频谱感知是认知无线电技术实现的关键技术,通过频谱感知技术来感知信道中的频谱空洞,使得认知用户可以利用频谱空洞进行信息的传输,从而缓解了频谱资源紧张与通信业务需求之间的矛盾。
这里简单介绍频谱感知的比较经典的一种方法——能量检测方法(Energy Detection,ED)。
能量检测方法原理介绍
信号的检测问题可以看作是二元假设问题
x
(
t
)
=
{
n
(
t
)
,
H
0
s
(
t
)
+
n
(
t
)
,
H
1
x\left( t \right)=\left\{ \begin{aligned} & n\left( t \right)\ \ \ \ \ \ \ \ \ ,\ \ \ \ \ {{H}_{0}} \\ & s\left( t \right)+n\left( t \right),\ \ \ \ {{H}_{1}} \\ \end{aligned} \right.
x(t)={n(t) , H0s(t)+n(t), H1
其中,
s
(
t
)
s\left( t \right)
s(t)表示信号,
n
(
t
)
n\left( t \right)
n(t)表示噪声,其方差可以设为
σ
2
{{\sigma }^{2}}
σ2,
H
i
{{H}_{i}}
Hi,
i
=
0
,
1
i=0,1
i=0,1表示不同假设。
在观测时间
T
T
T中,计算接收信号的能量与门限
t
h
th
th进行比较,如果大于门限
t
h
th
th的话,则判为
H
1
{{H}_{1}}
H1,即有信号;否则判为
H
0
{{H}_{0}}
H0,即无信号。
在实际中一般采用的数字信号,那么接收信号可以表示为
x
(
i
)
=
{
n
(
i
)
,
H
0
s
(
i
)
+
n
(
i
)
,
H
1
,
i
=
1
,
2
,
⋯
,
N
x\left( i \right)=\left\{ \begin{aligned} & n\left( i \right)\ \ \ \ \ \ \ \ \ ,\ \ \ \ \ {{H}_{0}} \\ & s\left( i \right)+n\left( i \right),\ \ \ \ \ {{H}_{1}} \\ \end{aligned} \right.,\ \ \ \ \ i=1,2,\cdots ,N
x(i)={n(i) , H0s(i)+n(i), H1, i=1,2,⋯,N
其中,
N
N
N表示的是样本点数。那么检验统计量
D
D
D可以表示为
D
=
∑
i
x
2
(
i
)
D=\sum\limits_{i}^{{}}{{{x}^{2}}\left( i \right)}
D=i∑x2(i)
可以证明,该检验统计量近似服从高斯分布,具体为
H
0
:
D
~
N
o
r
m
a
l
(
N
σ
2
,
2
N
σ
4
)
H
1
:
D
~
N
o
r
m
a
l
(
N
(
σ
2
+
σ
s
2
)
,
2
N
(
σ
2
+
σ
s
2
)
2
)
\begin{aligned} & {{H}_{0}}:D\tilde{\ }Normal\left( N{{\sigma }^{2}},2N{{\sigma }^{4}} \right) \\ & {{H}_{1}}:D\tilde{\ }Normal\left( N\left( {{\sigma }^{2}}+\sigma _{s}^{2} \right),2N{{\left( {{\sigma }^{2}}+\sigma _{s}^{2} \right)}^{2}} \right) \\ \end{aligned}
H0:D ~Normal(Nσ2,2Nσ4)H1:D ~Normal(N(σ2+σs2),2N(σ2+σs2)2)
其中,
σ
s
2
\sigma _{s}^{2}
σs2表示信号的平均功率。
对于恒虚警检测来说,当信号不存在的时候可以通过虚警概率
P
f
{{P}_{f}}
Pf来确定检测门限
t
h
th
th,这是由于在
H
0
{{H}_{0}}
H0的假设条件下,检验统计量
D
D
D服从高斯分布,虚警概率
P
f
=
P
(
D
>
t
h
∣
H
0
)
{{P}_{f}}=P\left( D>th|{{H}_{0}} \right)
Pf=P(D>th∣H0)
那么可以得到
P
f
=
Q
(
t
h
−
N
σ
2
2
N
σ
4
)
{{P}_{f}}=Q\left( \frac{th-N{{\sigma }^{2}}}{\sqrt{2N{{\sigma }^{4}}}} \right)
Pf=Q(2Nσ4th−Nσ2)
其中,
Q
(
x
)
=
1
2
π
∫
x
+
∞
e
−
t
2
/
2
d
t
Q\left( x \right)=\frac{1}{\sqrt{2\pi }}\int_{x}^{+\infty }{{{e}^{-{{t}^{2}}/2}}dt}
Q(x)=2π1∫x+∞e−t2/2dt
那么检测门限
t
h
th
th可以通过上式进行计算
t
h
=
σ
2
(
N
+
2
N
Q
−
1
(
P
f
)
)
th={{\sigma }^{2}}\left( N+\sqrt{2N}{{Q}^{-1}}\left( {{P}_{f}} \right) \right)
th=σ2(N+2NQ−1(Pf))
同样,在
H
1
{{H}_{1}}
H1的假设条件下,可以利用归一化的方法得到,检验统计量
D
D
D也服从高斯分布,那么检测概率可以表示为
P
d
=
P
(
D
>
t
h
∣
H
1
)
=
Q
(
t
h
−
N
(
σ
2
+
σ
s
2
)
2
N
(
σ
2
+
σ
s
2
)
2
)
{{P}_{d}}=P\left( D>th|{{H}_{1}} \right)=Q\left( \frac{th-N\left( {{\sigma }^{2}}+\sigma _{s}^{2} \right)}{\sqrt{2N{{\left( {{\sigma }^{2}}+\sigma _{s}^{2} \right)}^{2}}}} \right)
Pd=P(D>th∣H1)=Q⎝⎛2N(σ2+σs2)2th−N(σ2+σs2)⎠⎞
将门限
t
h
th
th带入,可以求的系统的检测概率。
当然能量也可以使用归一化的能量进行判决。此外,还有采用多个门限进行判决,提高检测概率,这里就不再叙述。
下面根据恒虚警检测的原理,通过仿真虚警概率
P
f
{{P}_{f}}
Pf和检测概率
P
d
{{P}_{d}}
Pd之间的关系.
从图中可以看出,随着信噪比的增加,相同虚警概率的条件下,检测概率越大,这也是和实际相符合的,即信道条件越好越容易检测出信号。
代码如下:
clear;
close all;
clc;
T = 50;
Fs = 100;
N =Fs*T; %采样点数
Mc = 1000; %蒙特卡洛实验次数
Pf =(0.01:0.02:1).^2; %虚警概率
SNR_db(1) = -25;
SNR_db(2) = -20;
SNR_db(3) = -15;
for i = 1:3
SNR(i) = power(10,SNR_db(i)/10);
end
for i=1:length(Pf)
for m=1:3
s_awgn = 0;
for kk = 1:Mc
t = ((kk-1)*N+1:kk*N)/Fs; %时间轴
x = randi([0 1],1,100)*2-1;
xx = rectpulse(x,N/100);
x = xx.*sin(2*pi*10*t);
ps = sum(abs(x).^2)/length(x);
noise = randn(1,N);
noise = noise-mean(noise);
noise_awgn = sqrt(ps/SNR(m))*noise/std(noise);
%高斯信道
re_sig = x + noise_awgn; %接收信号
th(i) = ps/SNR(m)*(N+sqrt(2*N)*sqrt(2)*erfcinv(2*Pf(i))); %门限值
power(i) = sum(re_sig.^2); %接收信号能量
if power(i) > th(i)
s_awgn = s_awgn + 1; %进行判决
end
end
Pd_sim_awgn(m,i) = s_awgn/Mc; %仿真高斯检测概率
end
end
figure
hold on;
plot(Pf,Pd_sim_awgn(1,:),'*-b',Pf,Pd_sim_awgn(2,:),'*-r',Pf,Pd_sim_awgn(3,:),'*-g');
grid on
legend('SNR=-20dB','SNR=-15dB', 'SNR=-10dB');
title ('不同信噪比的检测对比')
xlabel('Pf');
ylabel('Pd');
参考文献
[1]H. Urkowitz, “Energy detection of unknown deterministic signals,” in Proceedings of the IEEE, vol. 55, no. 4, pp. 523-531, April 1967, doi: 10.1109/PROC.1967.5573.
[2]潘建国,翟旭平.基于能量检测的频谱感知方法[J].上海大学学报(自然科学版),2009,15(01):54-59.