基于不确定集的波束形成算法原理介绍及MATLAB实现

原理介绍

该算法是通过将期望信号的导向矢量约束在一个不确定集上面,通过优化找到一个比名义导向矢量更加准确的导向矢量来提高波束形成器的稳健性。其中最具有代表性的是稳健Capon波束形成算法,其主要思想是在一定不确定区域内寻找使得阵列输出功率最大的那个导向矢量作为最佳估计值,以球形不确定集为例
S a = { a ∣ ∥ a ˉ 0 − a ∥ 2 < ε } {{S}_{a}}=\left\{ a|{{\left\| {{{\bar{a}}}_{0}}-a \right\|}_{2}}<\varepsilon \right\} Sa={aaˉ0a2<ε}
其中, ε \varepsilon ε为大于0的常数,不确定集 S a {{S}_{a}} Sa描述的是以 a ˉ 0 {{\bar{a}}_{0}} aˉ0为球心半径为 ε \varepsilon ε的球形区域,那么稳健的Capon波束形成可以描述为
{ min ⁡ w     w H R w s . t .     ∥ a ˉ 0 − a ∥ 2 < ε \left\{ \begin{aligned} & \underset{w}{\mathop{\min }}\,\ {{w}^{H}}Rw \\ & s.t.\ \ \ {{\left\| {{{\bar{a}}}_{0}}-a \right\|}_{2}}<\varepsilon \\ \end{aligned} \right. wmin wHRws.t.   aˉ0a2<ε
为了排除平凡解 a = 0 a=0 a=0, 需要 ε < M \varepsilon <\sqrt{M} ε<M
通过拉格朗日乘数法对其进行求解可以得到
a ^ = ( R − 1 λ + I ) − 1 a ˉ 0 = a ˉ 0 − ( I + λ R ) − 1 a ˉ 0 \hat{a}={{\left( \frac{{{R}^{-1}}}{\lambda }+I \right)}^{-1}}{{\bar{a}}_{0}}={{\bar{a}}_{0}}-{{\left( I+\lambda R \right)}^{-1}}{{\bar{a}}_{0}} a^=(λR1+I)1aˉ0=aˉ0(I+λR)1aˉ0
带入约束函数取等可以得到
∥ ( I + λ R ) - 1 a ˉ 0 ∥ = ε \left\| {{\left( I+\lambda R \right)}^{\text{-}1}}{{{\bar{a}}}_{0}} \right\|\text{=}\varepsilon (I+λR)-1aˉ0=ε
最终求得的稳健Capon波束形成的权系数为
w = R − 1 a 0 a 0 H R − 1 a 0 = ( R + 1 λ I ) − 1 a ˉ 0 a ˉ 0 H ( R + 1 λ I ) − 1 R ( R + 1 λ I ) − 1 a ˉ 0 w=\frac{{{R}^{-1}}{{a}_{0}}}{a_{0}^{H}{{R}^{-1}}{{a}_{0}}}=\frac{{{\left( R+\frac{1}{\lambda }I \right)}^{-1}}{{{\bar{a}}}_{0}}}{\bar{a}_{0}^{H}{{\left( R+\frac{1}{\lambda }I \right)}^{-1}}R{{\left( R+\frac{1}{\lambda }I \right)}^{-1}}{{{\bar{a}}}_{0}}} w=a0HR1a0R1a0=aˉ0H(R+λ1I)1R(R+λ1I)1aˉ0(R+λ1I)1aˉ0
从形式上看,稳健Capon波束形成(Robust Capon Beamforming, RCB)算法属于对角加载算法范畴,只不过是将求解加载系数的问题转化为了确定不确定集系数问题,将通过不确定集约束间接估计出加载系数。

仿真参数设置

参数名称参数值
阵元数10
期望信号角度 − 5 ∘ -5^{\circ} 5
干扰信号角度 − 3 0 ∘ -30^{\circ} 30 3 0 ∘ 30^{\circ} 30
SNR10dB
INR20
快拍数60

基于上述仿真参数,可以得到基于不确定集的波束方向图为
在这里插入图片描述
从图中可以看出,形成的方向图在期望信号方向形成了最大增益,在干扰方向上形成了零陷,同时可以通过增加误差来进一步显示该方法的优越性,这里就不再叙述。
代码如下:

clear;
close all;
clc;
warning off

%% 初始化
M = 10;             %阵元数
fs = 5000;          % 采样频率
f = 1000;           % 信号频率
snap = 60;         % 快拍数
T = 0.5;           %采样时间
t = 1/fs:1/fs:T;
c = 340;
lamda = c/f;              %波长
d = 0.5*lamda;          %阵元间距
theta0 =-5;                %期望信号角度
theta1 =-30;                %干扰角度
theta2 = 30;                %干扰角度
snr=10;                     %信噪比
inr1 =20;                   %干噪比
inr2 = 20;                   %干噪比
snr_noise = 0;              %噪声功率1,0dBW

%% 导向矢量
a0 = exp(-1j*2*pi*d*sind(theta0)*(0:M-1)'/lamda);
a1 = exp(-1j*2*pi*d*sind(theta1)*(0:M-1)'/lamda);
a2 = exp(-1j*2*pi*d*sind(theta2)*(0:M-1)'/lamda);

%% 信号、干扰和噪声
tar_sig = wgn(1,length(t), snr);
inf1 = wgn(1,length(t),inr1); 
inf2 = wgn(1,length(t),inr2); 
noise = wgn(M,length(t),snr_noise);

%% 阵列接收信号
rec_sig = a0*tar_sig + a1*inf1 + a2*inf2 + noise; 
interference = a1*inf1 + a2*inf2;
sig = a0 * tar_sig;

%% 协方差矩阵
Rx = rec_sig(:,1:snap)*rec_sig(:,1:snap)'/snap; 
Rs = sig(:,1:snap)*sig(:,1:snap)'/snap; 
Ri = interference(:,1:snap)*interference(:,1:snap)'/snap; 
Rn = noise(:,1:snap)*noise(:,1:snap)'/snap; 

%% RCB算法
epsilon = 3; 
R_inv = inv(Rx); 
cvx_begin
    variable a(M) complex;
    minimize norm(sqrtm(R_inv)*a)
subject to
   norm(a0-a) <= epsilon;
cvx_end
w_rcb = R_inv*a/(a'*R_inv*a);
theta = -90:0.1:90; % scan angle
p = exp(-1j*2*pi*d*(0:M-1)'*sind(theta)/lamda);
y = w_rcb'*p;
yy = 20*log10(abs(y)/max(abs(y)));
%% 绘图
figure(1);
plot(theta,yy,'linewidth', 2);
xlabel('角度(\circ)');ylabel('归一化增益(dB)')
grid on;
xlim([-90 90])
### 回答1: matlab 自适应波束形成算法是一种用于无线通信和雷达系统中的信号处理技术。它的主要目标是在多个接收信号中将所需信号的能量最大化,同时抑制其他干扰信号和噪声。 该算法的基本原理是通过调整阵列天线的权重来达到所需信号的空间增益最大化。首先,需要对信号进行采样和量化,然后将其传递给自适应波束形成算法。 该算法的核心是利用波束权重的自适应调整来实现最优的信号增益。它通过不断估计波束权重的值,根据接收到的信号和已知的系统参数进行计算,以使得目标信号增益最大化。 自适应波束形成算法通常包括以下步骤:首先,计算接收信号的协方差矩阵,以确定系统的特定参数。然后,根据特定的算法或准则,计算出波束权重的更新值。最后,通过调整每个天线的权重,将波束指向目标信号的方向。 matlab实现自适应波束形成算法时具有很大的优势。它提供了丰富的信号处理工具和函数库,使得算法的实施过程更加简便和高效。用户可以使用 matlab 中的内置函数,如cov和lms,来处理和计算信号的协方差矩阵和波束权重的更新值。 总之,matlab 自适应波束形成算法是一种利用波束权重自适应调整来实现最优信号增益的信号处理算法。通过利用 matlab 的信号处理工具和函数库,可以实现算法的简单且高效的实际应用。 ### 回答2: Matlab中的自适应波束形成算法是一种信号处理技术,它使用空间滤波器来增强所感兴趣信号的接收,同时抑制干扰信号。该算法主要包括以下几个步骤: 1. 信号采:首先,通过阵列天线收到多个传感器位置上的信号。 2. 信号预处理:对采到的信号进行预处理,如去噪、滤波等,以减少干扰信号的影响。 3. 构建波束权重:基于接收阵列的几何结构和所感兴趣信号的方向,利用自适应算法计算出各个传感器的波束权重。这些权重将使阵列的主瓣指向感兴趣信号的方向。 4. 波束形成:将波束权重应用于接收信号,通过对各个传感器的接收信号进行加权叠加,形成一个合成的波束。这样,合成的波束将增强感兴趣信号的接收。 5. 干扰抑制:通过波束形成,使阵列对于感兴趣信号具有方向选择性。在阵列主瓣指向感兴趣信号的方向上,干扰信号将被抑制,从而提高信号的信噪比。 6. 输出信号评估:对形成的波束输出信号进行评估,如计算接收信号的功率、信噪比等指标,以评估自适应波束形成算法的性能。 Matlab提供了丰富的信号处理工具箱和函数,可以方便地实现自适应波束形成算法,并进行仿真和实验研究。通过调整算法参数和优化策略,可以进一步提高算法的性能,使其能够适应不同环境和场景中的波束形成需求。 ### 回答3: 自适应波束形成算法是一种通过自动调整权重系数来提高信号接收系统性能的算法。在MATLAB中,我们可以使用自适应波束形成算法来提高阵列信号处理的效率。 具体来说,自适应波束形成算法通过分析各个接收天线的输入信号,从而自动生成适当的权重系数。这些权重系数可以用来调整各个天线的输出信号,使得在特定方向上的期望信号被加强,而不希望接收的干扰信号则被抑制。 MATLAB中常用的自适应波束形成算法包括最小均方误差(Least Mean Square, LMS)和逆协方差矩阵(Inverse Covariance Matrix, ICM)等。其中,LMS算法通过迭代调整权重系数,使得输出信号与参考信号之间的均方误差最小化。而ICM算法则通过计算接收信号的协方差矩阵及其逆矩阵,得到最优权重系数。 在MATLAB中,使用自适应波束形成算法可以通过计算接收信号的功率谱密度、相关矩阵和协方差矩阵来实现。其中,功率谱密度可以使用periodogram函数计算,相关矩阵和协方差矩阵可以使用cov函数计算。然后,根据所选择的自适应算法,使用LMS或ICM等函数来计算权重系数,并将其应用于接收信号的分析和处理中。 总的来说,MATLAB提供了丰富的函数和工具,使得自适应波束形成算法实现变得非常简单和高效。通过使用MATLAB来分析和调整权重系数,我们可以获得更好的阵列信号处理效果,提高信号接收系统的性能。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值