AI提示词学习 — 基础篇

学习网站:提示工程课程 

ChatGPT网址:ChatGPT (openai.com)

风格指导

  • 以拥有 20 多年经验和多个博士学位的[领域]专家的风格和水平写作。在回答中优先考虑有建设性的、不太知名的建议。使用详细的例子进行解释,尽量少离题和耍幽默。

        使用风格输入提示将大大提高回答的质量!

描述符

        添加形容词,如 “有趣的”、“简短的”、“不友好的”、“学术语法”等。

引导提示

        让我们定义一个系统,允许我们在同一会话中与教师和学生进行对话。我们将为学生和教师的限定说话风格,指定我们想要回答的格式,并包括一些语法结构,以便能够轻松地调整我们的提示来尝试各种回答。

        “教师” 代表一个在该领域拥有多个博士学位、教授该学科超过十年的杰出教授的风格。您在回答中使用学术语法和复杂的例子,重点关注不太知名的建议以更好地阐明您的论点。您的语言应该是精炼而不过于复杂。如果您不知道问题的答案,请不要胡乱编造信息——相反,提出跟进问题以获得更多背景信息。您的答案应以对话式的段落形式呈现。使用学术性和口语化的语言混合,营造出易于理解和引人入胜的语气。

        “学生”代表一个具有该学科入门级知识的大学二年级学生的风格。您使用真实生活的例子简单解释概念。使用非正式的、第一人称的语气,使用幽默和随意的语言。如果您不知道问题的答案,请不要编造信息——相反,澄清您还没有学到这个知识点。您的答案应以对话式的段落形式呈现。使用口语化的语言,营造出有趣和引人入胜的语气。

        “批评”代表分析给定文本并提供反馈的意思。 “总结”代表提供文本的关键细节。 “回答”代表从给定的角度回答问题的意思。

        圆括号()中的内容表示您写作的角度。 花括号中的内容表示您所涉及的主题。 方括号[]中的内容表示您应该采取的行动。 例子:(学生){哲学}[回答] 在大学里选择网络规划与设计这门课程相比其他课程有什么优势?

提示词举例

  • 请担任写作助理。每次我给你文本审查时,请以以下格式回复:

        写作水平:(例如高中、大学)

        写得好:(是,否,或有点)

        写作建议:关于写作的自由形式建议

        如果您理解,只需说“是”。

### 学习 Prompt Engineering 的资源 #### 资源概述 Prompt Engineering 是一门关于构建清晰、有效和具体的指令的艺术,这些指令可以引导像 ChatGPT 这样的大型语言模型生成期望的结果[^3]。以下是几种学习 Prompt Engineering 的资源: 1. **在线文章与博客** - 文章《Introduction to AI Prompt Engineering》提供了对提示工程的基础介绍以及一些工具推荐[^1]。 - 另外,《打工人转型之道:Prompt Engineering 基础》系列文章通过实际案例讲解了从基础到高级的技巧应用方法[^2]。 2. **学术论文** - SSRN 上的一研究论文探讨了更深层次的语言模型交互方式及其优化策略[^4]。这类学术资料适合希望深入理解理论背景的学习者。 3. **实践指南与教程视频** - 各大平台上的教学视频通常会展示具体的操作流程并分享实用的小窍门。例如,“10个 prompt engineering 技巧图解”就是一份图文并茂的手册,非常适合初学者快速上手。 4. **社区讨论与论坛交流** - 加入活跃的技术社群能够获取最新动态并与同行切磋经验。比如 Reddit 或 GitHub Discussions 中常有关于最佳 practices 和创新应用场景的话题。 5. **官方文档和支持材料** - OpenAI 官方网站不仅有详尽的产品说明还有专门针对开发者设计的工作坊内容可供参考(需自行查找链接)。 #### 示例代码片段演示如何编写高效 Prompts 下面是一个简单的 Python 函数用来自动化创建结构化 prompts: ```python def create_prompt(task_description, input_data=None): base_template = "You are an assistant tasked with solving {task}." if input_data: detailed_template = f"{base_template} Here's your data:{input_data}" else: detailed_template = base_template.format(task=task_description) return detailed_template example_task = "a classification problem involving fruits." data_sample = ["apple", "banana"] print(create_prompt(example_task, data_sample)) ``` 上述脚本定义了一个函数 `create_prompt` ,它接受任务描述作为参数,并可选地接收输入数据来定制个性化的请求语句给 LLMs 使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值