python:数据可视化 相关系数热力图绘制

仅十余行代码可实现可视化的相关系数矩阵热力图

把相关系数的展示做成热力图,展示更为直观并且方便与他人交流

主要用到的是seaborn库里的heatmap()函数

1.准备相关包

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
import seaborn as sns
import matplotlib.pyplot as plt

2.使用pandas读取数据,括号内为具体的文件路径,使用head()函数查看数据表头

data_train_set = pd.read_csv("C:/Users/Desktop/test/data_set.csv")
data_train_set.head()

3.【重点】计算相关系数

d = data_train_set.corr()
display(d)

  具体的相关系数计算结果如下:

4.【展示】使用heatmap()函数绘制相关系数矩阵热力图

plt.subplots(figsize = (12,12))
sns.heatmap(d,annot = True,vmax = 1,square = True,cmap = "Reds")
plt.show()

最终的绘制效果如图

Python可以使用相关系数热力来显示数据集中各个变量之间的相关性。首先,需要安装seaborn库和matplotlib库来绘制热力。然后,可以按照以下步骤绘制相关系数热力: 1. 导入所需的库: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt 2. 准备数据集并计算相关系数: cor = data.corr(method='pearson') 这里使用了皮尔逊相关系数,可以根据需求选择其他相关系数。 3. 绘制热力: plt.rcParams['figure.figsize'] = (20, 15) # 设置形大小 sns.heatmap(cor, annot=True, linewidths=.5, cmap="YlGnBu") # 绘制热力 plt.title('Correlation Heatmap', fontsize=30) # 设置标题 plt.tight_layout() # 调整布局 这样就可以得到一个相关系数热力,其中颜色的深浅表示相关性的强度,越接近1或-1表示相关性越强,越接近0表示相关性越弱。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [python绘制相关系数热力](https://blog.csdn.net/qq_54423921/article/details/126921899)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [相关系数热力python)](https://blog.csdn.net/weixin_43135165/article/details/124371849)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值