【科研绘图】【相关性热力图】:附Origin详细画图流程

图片

目录

No.1 理解相关性热力图

1 相关性

2 相关性热力图

No.2 画图流程

1 导入数据并绘图

2 色阶控制

3 设置绘图细节

4 设置坐标轴

5 效果图


No.1 理解相关性热力图

1 相关性

  • 相关性,是统计学中的一个基本概念,用于描述两个或多个变量之间关系的强度和方向。当两个变量之间存在某种关联时,我们说这两个变量是相关的。相关性可以是正相关、负相关或零相关,具体取决于一个变量如何随另一个变量的变化而变化

2 相关性热力图

  • 相关性热力图,是一种高级的数据可视化技术,通过矩阵的形式展示数据集中各变量之间的相关性,其中每个单元格代表两个变量之间的相关性系数,并以颜色深浅来直观表示相关性的强弱。常用皮尔逊相关系数来衡量,该系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无线性相关
  • </
### 使用Python生成相关性热力 在数据科学领域,相关性热力是一种用于展示变量之间关系的有效方式。以下是通过Python中的`pandas`、`numpy`以及`seaborn`库来生成相关性热力的具体方法。 #### 准备工作 为了绘制相关性热力,通常需要先计算数据集的相关矩阵。这可以通过`pandas.DataFrame.corr()`函数完成[^1]。随后利用`seaborn.heatmap()`函数将该矩阵可视化为热力。 #### 示例代码 以下是一个完整的示例代码: ```python import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # 创建随机数据框 np.random.seed(0) data = np.random.randn(100, 5) df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D', 'E']) # 计算相关系数矩阵 correlation_matrix = df.corr() # 绘制热力 plt.figure(figsize=(8, 6)) sns.set(style="whitegrid", font_scale=1.2) heat_map = sns.heatmap( correlation_matrix, annot=True, # 显示具体数值 fmt=".2f", # 数值保留两位小数 cmap='coolwarm', # 颜色主题 cbar_kws={"shrink": .8} # 调整颜色条大小 ) plt.title('Correlation Heatmap') plt.show() ``` 上述代码中,`annot=True`参数表示在单元格中标注具体的数值;`cmap='coolwarm'`定义了渐变的颜色方案,其中冷色调代表负相关而暖色调代表正相关。 对于更复杂的场景,比如分类变量的影响分析,则可以参考其他绘图类型如小提琴(`violinplot`)的应用实例[^2]。如果涉及深度学习模型解释,则可能需要用到高级技术如Grad-CAM来进行特征重要性的可视化[^3]。 #### R语言实现 虽然本问题主要讨论的是Python环境下的解决方案,但在R语言中也可以轻松构建类似的表。常用包包括`ggplot2`和`corrplot`: ```r library(ggplot2) library(corrplot) # 构造模拟数据 set.seed(123) data <- matrix(rnorm(500), ncol=5) colnames(data) <- LETTERS[1:5] # 计算并显示相关矩阵 cor_mat <- cor(data) corrplot(cor_mat, method="color", type="upper", tl.col="black", tl.srt=45) ``` 此段脚本展示了如何借助`corrplot`包快速生成美观的相关性热力。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值