App刚刚上线后,进步空间很大,初始产品功能是凭借经验创造,没有经过用户使用验证,我们会通过多次产品迭代,通过用户行为分析来进行细节调整,帮助App产品优化,让用户更愿意在我们的App下订单。
大多数产品进行更新的时候,靠的是pm的经验或者是少量的调研问卷,这样的迭代方式缺乏数据佐证,通过用户行为分析驱动产品优化,可以知道用户在哪些功能上有更多的驻足,或者知道哪些功能是用户不喜欢的,这种方式的产品优化会更有依据,效果也比较明显易见。
我会分两部分来介绍基于用户行为分析的数据驱动App产品优化,分别是优化思路和实操案例。
优化思路:
产品没有基础对比数据的时候,我们会通过几个方面进行产品的数据分析得到基础数据,之后可以基于基础数据设定增长目标,一款App要优先关注哪些数据?
1、了解用户对产品功能的使用情况
通过智能路径了解用户从打开App到在App上的发生的事件触发,了解用户所有交互行为,用智能路径刻画出用户的每一步行为;
2、关注核心漏斗的转化
通过漏斗分析关注核心漏斗的转化率,比如用户从打开app到加入购物车,到提交订单的漏斗流失情况;
3、关注产品单个功能的使用情况
可以通过事件分析,单独跟踪某一个新上功能;
4、关注用户完成核心目标的共性行为
5、版本更新后的用户体检差异
6、通过细分维度进行交叉数据分析,洞察有益结果,驱动迭代。
接下来,我们需要基于当前数据的增长计划来明确产品优化的方向,比如提高加入购物车到支付订单的转化率,可以通过以下几步完