Linux开发一些有用的命令,直接复制即可

本文提供了详细的U-Boot固件烧录步骤,包括SMDKC110和SMDK6410平台的烧录指令,以及如何使用仿真器或USB下载到指定地址并进行烧写。此外,还介绍了不同文件如zImage、ramdisk、system.img和userdata.img的具体烧录方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SMDKC110:

dnw 40000000

U-Boot
onenand erase 0 40000;onenand  write 40000000 0 40000

zImage
dnw 40000000;onenand erase 600000 500000;onenand write 40000000 600000 500000;re

ramdisk
onenand erase b00000 300000;onenand write 40000000 b00000 300000

system.img
onenand erase e00000 5A00000;onenand write.yaffs2 40000000 e00000 5A00000

userdata.img
onenand erase b800000 14800000;onenand write.yaffs 40000000 b800000 1080


onenand erase 0 10000000

onenand write 57e00000 0 40000

onenand erase 0 40000;onenand write c0008000 0 40000

当你uboot跑起来之后再用仿真器或者USB下载到c0008000 再用如下命令烧写.

SMDK6410:
Clean
onenand erase 04600000 02800000

U-Boot
onenand erase 0 40000;onenand write c0008000 0 40000
       测试:onenand erase 80000 80000;onenand write c0008000 80000 80000

zImage
dnw;onenand erase 600000 300000;onenand write c0008000 600000 300000;re

ramdisk
onenand erase 900000 100000;onenand write c0008000 900000 100000

system.img
onenand erase a00000 3C00000;onenand write.yaffs2 c0008000 a00000  377F040

userdata.img
####onenand erase A000000 5E00000;onenand write.yaffs2 c0008000 A000000 2559C0
onenand erase A000000 6000000;onenand write.yaffs2 c0008000 A000000      2559C0

onenand erase 4d00000 5300000


SMDKC100:
U-Boot
nand erase 0 40000;nand  write c0000000 0 40000
onenand erase 0 40000;onenand  write c0008000 0 40000

zImage
dnw;nand erase 600000 300000;nand write c0000000 600000 300000
dnw;onenand erase 600000 300000;onenand write c0008000 600000 300000;re

ramdisk
nand erase 900000 100000;nand write c0000000 900000 100000
onenand erase 900000 100000;onenand write c0008000 900000 100000

system.img
nand erase a00000 4300000;nand write.yaffs2 c0000000 a00000 352f980
onenand erase a00000 4300000;onenand write.yaffs2 c0008000 a00000 ?

userdata.img
nand erase 9000000 7000000;nand write.yaffs c0000000 9000000 840
onenand erase 9000000 7000000;onenand write.yaffs c0008000 9000000 840

 


console=ttySAC2,115200,mem=256M
nfs cdc
root=/dev/nfs init=/init nfsroot=192.168.1.10://nfsroot/rootfs ip=192.168.1.100 console=ttySAC2,115200 fbcon=rotate:1

root=/dev/nfs init=/init nfsroot=192.168.1.10:/nfs ip=192.168.1.100 console=tty0 console=ttySAC2,115200 fbcon=rotate:3
root=/dev/nfs init=/linuxrc nfsroot=192.168.1.10:/nfs ip=192.168.1.100 console=tty0 console=ttySAC2,115200 fbcon=rotate:3

#邱俊涛svn linux-2.6.27-android
init=/init console=ttySAC2,115200 root=/dev/nfs nfsroot=192.168.1.110:/home/win_share/root ip=192.168.1.100:192.168.1.110:192.168.1.110:255.255.255.0:ubuntu9.04:usb0:off
init=/init console=ttySAC2,115200 root=/dev/nfs nfsroot=192.168.1.10:/nfs ip=192.168.1.100:192.168.1.1:192.168.1.1:255.255.255.0:ubuntu9.04:usb0:off

#linux2.6.24 onenand 配置
root=/dev/mtdblock2 rw rootfstype=jffs2 init=/linuxrc console=ttySAC2,115200
root=/dev/mtdblock3 rw rootfstype=jffs2 init=/linuxrc console=ttySAC2,115200
init=/linuxrc console=ttySAC2,115200

sudo smbmount //192.168.16.99/开发部/ /mnt/ -o iocharset=utf8,codepage=cp936,username=<username>,password=<password>
sudo smbmount //192.168.16.247/samsung  /mnt/ -o username=<username>%<password>
sudo smbmount //192.168.16.247/android-1.5  /mnt/ -o username=<username>%<password>


将luther_ramdisk.img打包成u-boot下载格式
mkimage -A arm -O linux -T ramdisk -C none -a 0x50800000 -n "ramdisk" -d luther_ramdisk.img luther_ramdisk.img-uboot.img

#在当前目录及其子目录下查找*.txt文件,并将查找到的文件信息显示出来。注意:{}和/之间有空格;不要少了最后的分号
find ./ -name "*.mk" -exec grep "apns" {} -nH /;
find . -type d -iname ".svn" -exec rm -rf {} /;

改变控制台debug消息显示级别,可以打印printk(DEBUG ...)信息
echo > /proc/sys/kernel/printk "8"

把system.img挂载区重新挂到可写
mount -o rw,remount -t yaffs2 /dev/block/mtdblock0 /system

echo "at">/dev/ttyspi0

DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值