先说一个现象:一龙生九子,九子各不同。是什么原因造成的?
龙生九子,汉语成语,读音是lóng shēng jiǔ zǐ,意思是多用来比喻同胞兄弟的各有所长,出自《玉芝堂谈荟·龙生九子》。 ----百度百科
传统遗传学的理由:基因重组
数量遗传学的理由:孟德尔抽样
所以,什么是孟德尔抽样呢?
1. 基本模型
个体的每个表型值是由环境因素和遗传因素共同决定的,可以用下面公式:
表 型 值 = 环 境 效 应 值 + 遗 传 效 应 自 + 残 差 效 应 值 表型值 = 环境效应值 + 遗传效应自 + 残差效应值 表型值=环境效应值+遗传效应自+残差效应值
或者写为:
y i j = μ i + g i + e i j y_{ij} = \mu_i + g_i +e_{ij} yij=μi+gi+eij
上面公式中 y i j y_{ij} yij是个体i的第j个记录; μ i \mu_i μi是固定环境效应值,比如牧场、群、出生年份、性别等; g i g_i gi是个体的加性效应值、显性效应值、上位性效应值的和; e i j e_{ij} eij是影响个体i的所有随机环境效应的和。
g = g a + g d + g e g = g_a + g_d +g_{e} g=ga+gd+ge
加性效应值 g a g_a ga代表个体基因源自亲本的平均加性效应,称为育种值(breeding value)。
显性效应 g d g_d gd代表座位内的互作
互作效应 g e g_e ge代表座位间的互作
2. 个体育种值组合
比如 a i a_i ai为个体i的育种值, a s a_s as为父本的育种值, a d a_d ad为母本的育种值,因为父母本各传递一般的效应给子代,所以:
a i = g a i = 1 2 a s + 1 2 a d + m i a_i = g_{ai} = \frac{1}{2}a_s + \frac{1}{2}a_d + m_i ai=gai=21as+21ad+mi
孟德尔抽样: m i m_i mi为个体育种值与父母平均育种值的离差,即孟德尔抽样(Mendelian sampling)。因为全同胞后代的基因不完全相同,存在遗传变异。孟德尔抽样可以看作是个体源自亲本的平均加性效应与该亲本传递给所有后代共同平均基因效应的离差。
3. 为何基因组选择估算的育种值准确?
比如系谱:
构建A矩阵,将4,5,6提取出来:
如果个体编号A,3,4,5都有基因型,那么可以构建G矩阵,比如是这样的:
可以看出来,系谱构建的矩阵,亲子的都是0.5,全同胞内部都是0.5625(因为这里父母间有关系系数,如果没有应该是0.5),它并没有估计出孟德尔抽样。
而基因型数据构建的G矩阵,亲子分别是:0.515
,0.481
,0.586
,这里的孟德尔抽样就是减去0.5,分别是0.015
,-0.029
,0.086
,这些值真实反应出了个体间的关系,比系谱更准确。
混合线性方程组是这样的:
因为G比A更能反应出个体间的关系,所以评估出的GEBV比EBV更准确。
4, 所以九子各不同
是什么原因?
因为孟德尔抽样不一样。
5,什么情况下孟德尔抽样为0?
商品代!!!
比如玉米杂交种F1,父母都是高度纯合的自交系,F1的基因型完全一致。即使将个体的基因型检测出来,也是完全一致的,构建矩阵也是完全一致的,这时候和系谱构建的亲缘关系是一致的,就没有孟德尔抽样了。
6,实际应用情况
并不是几个个体检测基因型,构建G矩阵,就可以计算GS,需要一定的量,群体太小也没用,计算得不准确。