- 论文题目: RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction
- 论文链接: https://arxiv.org/abs/2408.08593
- 代码仓库: https://github.com/UNIC-Lab/RadioDiff
本文介绍一篇被中科院一区期刊IEEE TCCN录用的论文,作者为来自西安电子科技大学的王秀程、陶科达、承楠,以及沈学民院士等人,通信作者为西安电子科技大学教授承楠。
无线电地图(Radio Map, RM)是一种非常有前途的技术,它通过位置信息获取路径损耗,对于 6G 网络应用中降低路径损耗估算的通信成本具有重要意义。
以往的 RM 的构建方式要么需要大量计算资源,要么依赖昂贵的基于采样的路径损耗测量方法。尽管基于神经网络(Neural Network, NN)的方法可以在不采样的情况下高效构建 RM,但其性能仍未达到最佳。这主要是由于 RM 构建问题的生成特征与现有基于神经网络的方法所采用的判别建模之间存在偏差。
因此,为了提升 RM 构建性能,本文提出了一种基于去噪扩散模型的方法(RadioDiff),将无采样 RM 构建问题建模为条件生成问题,以实现高质量的 RM 构建。此外,为增强扩散模型从动态环境中提取特征的能力,文中采用了带有自适应快速傅立叶变换模块的注意力 U-Net 作为骨干网络,从而显著提高了动态环境特征的提取能力。同时,利用解耦扩散模型进一步提升 RM 构建性能。文章首次从数据特征和神经网络训练方法两个角度,对 RM 构建是一个生成问题的原因进行了全面的理论分析。
总结来说,本文的贡献如下:
- 条件生成建模:首次将无采样 RM 构建问题建模为条件生成问题,将基站(BS)位置和环境特征作为生成条件提示,并从数据特征和训练方法的角度,理论分析了 RM 构建是生成问题的原因。
- 扩散模型的应用:首次将基于扩散的生成模型应用于 RM 构建,并采用解耦扩散模型提升性能和推理效率
- 动态环境特征提取:通过静态和动态环境特征提示矩阵,以及自适应快速傅立叶变换模块,增强了扩散模型在动态环境特征提取中的能力。
- 实验验证:实验结果表明,所提出的 RadioDiff 在准确度、结构相似度(SSIM)和峰值信噪比(PSNR)三项指标上均达到了当前最先进(SOTA)的 RM 构建性能。
扩散模型是一种基于马尔可夫链的生成模型,它通过逐步学习去噪过程来恢复数据.
扩散模型的工作原理: 扩散模型的核心思想是通过一系列步骤将原始数据逐渐“扩散”成噪声,然后通过逆向过程——即从添加了噪声的数据中逐步去除噪声,以生成原始数据。这个过程可以分为两个主要阶段。
前向扩散过程: 原始数据会经历一个由多个时间步组成的马尔可夫链,在每个时间步中,都会根据一定的概率分布向数据中添加高斯噪声。经过T步之后,原始数据会被完全转化为随机噪声。
反向去噪过程:在生成数据时,扩散模型首先从先验分布中创建未结构化的噪声向量,然后通过训练好的神经网络按照相反的时间顺序去除这些噪声。
从数据特征和训练方法两个角度分析,并且从统计学习的角度以及从训练方法来看,RM的构建是一个条件生成问题。
对于其Radiodiff框架示意图,总结如下:
- VAE编码:使用VAE将RM编码为潜在向量,减少输入/输出空间维度
- U-Net架构:采用编码器和解码器组成的U-Net架构来促进去噪过程
- 提示信息以灰度图形式表示,包含三个通道,分别描述建筑物、车辆和AP的特征。
- 对提示信息进行编码后,将其与U-Net网络集成,使模型能够在特定环境条件下生成RM
效果对比
SRM 的比较:表中第一部分和图中给出了针对 SRM 场景的 RadioMapSeer-Test 数据集的定量比较,我们的模型在误差指标(即 NMSE、RMSE)和结构指标(即 SSIM、PSNR)上都优于其他方法,表明我们的预测和生成的 RM 更准确。RadioDiff 在 PSNR 指标上表现出色,表明与其他方法相比,它生成的 RM 具有更清晰、更锐利的结构边缘。
DRM的比较:对于针对 DRM 情景的 RadioMapSeer-Test 数据集的定量比较。在 DRM 情景下,模型必须考虑额外的动态环境因素。尽管性能普遍下降,但RadioDiff 在所有指标上始终保持最佳结果。进一步表明,RadioDiff 在更复杂的条件下具有稳定的高性能,尤其是在以复杂环境和重叠信号为特征的场景中。
关于AFT的消融研究
定性结果表明,AFT的加入进一步提高了模型对边缘信号的灵敏度。使得RM的图像具有更准确的边缘,在多个信号重叠时也能获得更稳健的结果。