关系抽取总结:信息抽取的主要目的是将非结构化或半结构化描述的自然语言文本转化成结构化数据(Structuring),关系抽取是其重要的子任务,主要负责从文本中识别出实体(Entities),抽取实体之间的语义关系。如:句子“Bill Gates is the founder of MicrosoftInc.”中包含一个实体对(Bill Gates, Microsoft Inc.),这两个实体对之间的关系为Founder。
串联抽取方法:
论文一:Neural Relation Extraction with Selective Attention over Instances.2016ACL
使用模型:输入:句子à向量表示(降维)àCNN(卷积层、池化层、非线性层)àAttentionà输出
向量表示:一个句子是多维的把高维降成低维,用word2vec工具分为(world,position)
CNN:(卷积层、池化层、非线性层)
Attention:将CNN的全连接层换成了选择性关注机制
论文二: Distant Supervisiopn for Relation Extraction via PiecewiseConvolutional Neural Networks.2015ACL
使用模型:输入:句子à向量表示(降维)àCNN(卷积层、池化层、非线性层)àSoftmax Layers(特征分类à输出
CNN:原始句子经过CNN处理就成为了一个具有多个特征的向量
论文三:Attention-Based Bidirectional LongShort-Term Memory Networks for RelationClassification.2016ACL
使用模型:输入:句子à词嵌入àLSTMàAttentionà输出
输入层:将原始句子输入该层;
向量层:将每个单词映射到一个低维向量,使用word2vec工具。
LSTM层:利用BLSTM从输入的向量得到该句子的强特征
关注层:

本文总结了关系抽取的两种主要方法——串联抽取和联合抽取,涉及多篇论文的研究成果。串联抽取包括使用CNN、Attention机制等的模型;联合抽取则通过共享参数和Bi-LSTM等模型实现实体和关系的共同提取。这些方法在命名实体识别、关系分类任务中表现出色。
最低0.47元/天 解锁文章
1107

被折叠的 条评论
为什么被折叠?



