SegNet-tensorflow编译小结

本文总结了SegNet-tensorflow的编译过程,包括从github下载代码、安装依赖库,特别是解决tensorflow版本兼容问题。同时,详细介绍了数据集CamVid的下载及放置,并提供了训练前的配置步骤,如创建Logs文件夹、修改配置文件路径。在训练过程中,强调了路径正确性对避免OutOfRangeError错误的重要性,以及处理GPU设备名问题的建议。
摘要由CSDN通过智能技术生成

代码及相关库的下载

  1. 从github上下载SegNet-tensorflow的代码,命令如下:
$git  clone https://github.com/tkuanlun350/Tensorflow-SegNet.git SegNet
  1. 安装readme中要求的库。
$pip install tensorflow-gpu==1.10
$pip install pillow
$pip install scikit-image

scikit-image 需要其他库如matplotlib等,如果装的时候遇到问题,按提示信息把依赖的库都装上就行。

注意:这里的tensorflow版本一定要适配,不然会出现loaded runtime CuDNN library:7.1.4 but source was compiled with 7.2.1 这样版本不兼容的问题。
3. 下载训练用数据集CamVid
下载地址:https://github.com/alexgkendall/SegNet-Tutorial
下载其中的Camvid文件夹,然后放在SegNet目录下。

编译SegNet-tensorflow代码

  1. 进入下载的SegNet的代码根目录下,新建一个Logs的文件夹用来存放日志。
$mkdir Logs
  1. 用 gedit 打开

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值