语义分割由简入繁,经典的代码实现(tensorflow+keras)

Segnet–Unet–Pspnet–Deeplabv3+语义分割的代码实现

做语义分割的话,第一步就是要制作数据集了,当然你也可以找官方的数据集进行训练,下面我们就先说明如何制作数据集。

  • 官方数据集:1.coco 2.cityscapes
  • 制作自己的数据集
    1.首先看网络所要求的数据集格式,像segnet,unet,这些网络,所要求的的数据集,应包含两个文件夹
    数据集格式
    label是一个8位的灰度图,每一个灰度值对应于原图中的一个类
    src是语义分割的原图。这里注意要根据自己电脑的显存大小切割合适的图片尺寸大小,不然显存会爆炸。QWQ详细制作数据集的代码在我的博客里有写到https://mp.csdn.net/mdeditor/94402617#
    那么对于pspnet,制作数据集的时候不仅要做出label和src,而且还要做一个list.txt,这里存放着label和src的地址。
    list对于deeplabv3+,它需要在制作好图片以及list之后还需要制作tfrecord
    deeplab
    然后用官方的程序,制作tfrecord
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Converts PASCAL VOC 2012 data to TFRecord file format with Example protos.

PASCAL VOC 2012 dataset is expected to have the following directory structure:

  + pascal_voc_seg
    - build_data.py
    - build_voc2012_data.py (current working directory).
    + VOCdevkit
      + VOC2012
        + JPEGImages
        + SegmentationClass
        + ImageSets
          + Segmentation
    + tfrecord

Image folder:
  ./VOCdevkit/VOC2012/JPEGImages

Semantic segmentation annotations:
  ./VOCdevkit/VOC2012/SegmentationClass

list folder:
  ./VOCdevkit/VOC2012/ImageSets/Segmentation

This script converts data into sharded data files and save at tfrecord folder.

The Example proto contains the following fields:

  image/encoded: encoded image content.
  image/filename: image filename.
  image/format: image file format.
  image/height: image height.
  image/width: image width.
  image/channels: image channels.
  image/segmentation/class/encoded: encoded semantic segmentation content.
  image/segmentation/class/format: semantic segmentation file format.
"""
import math
import os.path
import sys
import build_data
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('image_folder',
                           './pro/JPEGImages',
                           'Folder containing images.')

tf.app.flags.DEFINE_string(
    'semantic_segmentation_folder',
    './pro/SegmentationClass',
    'Folder containing semantic segmentation annotations.')

tf.app.flags.DEFINE_string(
    'list_folder',
    './pro/ImageSets/Segmentation',
    'Folder containing lists for training and validation')

tf.app.flags.DEFINE_string(
    'output_dir',
    './pro/tfrecord',
    'Path to save converted SSTable of TensorFlow examples.')


_NUM_SHARDS = 4


def _convert_dataset(dataset_split):
  """Converts the specified dataset split to TFRecord format.

  Args:
    dataset_split: The dataset split (e.g., train, test).

  Raises:
    RuntimeError: If loaded image and label have different shape.
  """
  dataset = os.path.basename(dataset_split)[:-4]
  sys.stdout.write('Processing ' + dataset)
  filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
  print(filenames)
  num_images = len(filenames)
  num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))

  image_reader = build_data.ImageReader('png', channels=3)
  label_reader = build_data.ImageReader('png', channels=1)
  #label_reader = build_data.ImageReader('tif', channels=1)

  for shard_id in range(_NUM_SHARDS):
    output_filename = os.path.join(
        FLAGS.output_dir,
        '%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
    with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
      start_idx = shard_id * num_per_shard
      end_idx = min((shard_id + 1) * num_per_shard, num_images)
      for i in range(start_idx, end_idx):
        sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
            i + 1, len(filenames), shard_id))
        sys.stdout.flush()
        # Read the image.
        sys.stdout.flush()
        image_filename = os.path.join(
            FLAGS.image_folder, filenames[i] + '.' + 'png')

        image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
        height, width = image_reader.read_image_dims(image_data)
        # Read the semantic segmentation annotation.
        seg_filename = os.path.join(
            FLAGS.semantic_segmentation_folder,
            filenames[i] + '.' + 'png')
        seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
        seg_height, seg_width = label_reader.read_image_dims(seg_data)
        if height != seg_height or width != seg_width:
          raise RuntimeError('Shape mismatched between image and label.')
        # Convert to tf example.
        example = build_data.image_seg_to_tfexample(
            image_data, filenames[i], height, width, seg_data)
        tfrecord_writer.write(example.SerializeToString())
    sys.stdout.write('\n')
    sys.stdout.flush()


def main(unused_argv):
  dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt'))
  for dataset_split in dataset_splits:
    _convert_dataset(dataset_split)


if __name__ == '__main__':
  tf.app.run()

开始训练

  1. segnet
#coding=utf-8
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import argparse
import numpy as np  
from keras.models import Sequential  
from keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation  
from keras.utils.np_utils import to_categorical  
from keras.preprocessing.image import img_to_array  
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import LabelEncoder  
from PIL import Image  
import matplotlib.pyplot as plt  
import cv2
import random
import os
from tqdm import tqdm  
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
seed = 7  
np.random.seed(seed)  
  
#data_shape = 360*480  
img_w = 256
img_h = 256
#有一个为背景  
n_label = 16
  
classes = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10,11.,12.,13.,14.,15.]
  
labelencoder = LabelEncoder()  
labelencoder.fit(classes)  

# image_sets = ['1.png','2.png','3.png']

        
def load_img(path, grayscale=False):
    if grayscale:
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
    else:
        img = cv2.imread(path)
        img = np.array(img,dtype="float") / 255.0
    return img


filepath ='D:/rssrai2019_semantic_segmentation/segnet_pic/'

def get_train_val(val_rate = 0.25):
    train_url = []    
    train_set = []
    val_set  = []
    for pic in os.listdir(filepath + 'src'):
        train_url.append(pic)
    random.shuffle(train_url)
    total_num = len(train_url)
    val_num = int(val_rate * total_num)
    for i in range(len(train_url)):
        if i < val_num:
            val_set.append(train_url[i]) 
        else:
            train_set.append(train_url[i])
    return train_set,val_set

# data for training  
def generateData(batch_size,data=[]):  
    #print 'generateData...'
    while True:  
        train_data = []  
        train_label = []  
        batch = 0  
        for i in (range(len(data))): 
            url = data[i]
            batch += 1 
            img = load_img(filepath + 'src/' + url)
            img = img_to_array(img) 
            train_data.append(img)  
            label = load_img(filepath + 'label/' + url, grayscale=True)
            label = img_to_array(label).reshape((img_w * img_h,))  
            # print label.shape  
            train_label.append(label)  
            if batch % batch_size==0: 
                #print 'get enough bacth!\n'
                train_data = np.array(train_data)  
                train_label = np.array(train_label).flatten()  
                train_label = labelencoder.transform(train_label)  
                train_label = to_categorical(train_label, num_classes=n_label)  
                train_label = train_label.reshape((batch_size,img_w * img_h,n_label))  
                yield (train_data,train_label)  
                train_data = []  
                train_label = []  
                batch = 0  
 
# data for validation 
def generateValidData(batch_size,data=[]):  
    #print 'generateValidData...'
    while True:  
        valid_data = []  
        valid_label = []  
        batch = 0  
        for i in (range(len(data))):  
            url = data[i]
            batch += 1  
            img = load_img(filepath + 'src/' + url)
            img = img_to_array(img)  
            valid_data.append(img)  
            label = load_img(filepath + 'label/' + url, grayscale=True)
            label = img_to_array(label).reshape((img_w * img_h,))  
            # print label.shape  
            valid_label.append(label)  
            if batch % batch_size==0:  
                valid_data = np.array(valid_data)  
                valid_label = np.array(valid_label).flatten()  
                valid_label = labelencoder.transform(valid_label)  
                valid_label = to_categorical(valid_label, num_classes=n_label)  
                valid_label = valid_label.reshape((batch_size,img_w * img_h,n_label))  
                yield (valid_data,valid_label)  
                valid_data = []  
                valid_label = []  
                batch = 0  
  
def SegNet():
    model = Sequential()
    #encoder  
    model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(img_w,img_h,3),padding='same',activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu'))
    model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2,2)))  
    #(128,128)  
    model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    #(64,64)  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    #(32,32)  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    #(16,16)  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    #(8,8)  
    #decoder  
    model.add(UpSampling2D(size=(2,2)))  
    #(16,16)  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(UpSampling2D(size=(2, 2)))  
    #(32,32)  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(UpSampling2D(size=(2, 2)))  
    #(64,64)  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(UpSampling2D(size=(2, 2)))  
    #(128,128)  
    model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(UpSampling2D(size=(2, 2)))  
    #(256,256)  
    model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h,3), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu'))
    model.add(BatchNormalization())  
    model.add(Conv2D(n_label, (1, 1), strides=(1, 1), padding='same'))
    model.add(Reshape((n_label,img_w*img_h)))  
    #axis=1和axis=2互换位置,等同于np.swapaxes(layer,1,2)  
    model.add(Permute((2,1)))  
    model.add(Activation('softmax'))  
    model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])  
    model.summary()  
    return model  
  
  
def train(args): 
    EPOCHS = 10
    BS = 16
    model = SegNet()  
    modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')
    callable = [modelcheck]  
    train_set,val_set = get_train_val()
    train_numb = len(train_set)  
    valid_numb = len(val_set)  
    print ("the number of train data is",train_numb)  
    print ("the number of val data is",valid_numb)
    H = model.fit_generator(generator=generateData(BS,train_set),steps_per_epoch=train_numb//BS,epochs=EPOCHS,verbose=1,  
                    validation_data=generateValidData(BS,val_set),validation_steps=valid_numb//BS,callbacks=callable,max_q_size=1)  

    # plot the training loss and accuracy
    plt.style.use("ggplot")
    plt.figure()
    N = EPOCHS
    plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
    plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
    plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
    plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
    plt.title("Training Loss and Accuracy on SegNet Satellite Seg")
    plt.xlabel("Epoch #")
    plt.ylabel("Loss/Accuracy")
    plt.legend(loc="lower left")
    plt.savefig(args["plot"])


def args_parse():
    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-a", "--augment", help="using data augment or not",
                    action="store_true", default=False)
    ap.add_argument("-m", "--model", required=True,
                    help="path to output model")
    ap.add_argument("-p", "--plot", type=str, default="plot.png",
                    help="path to output accuracy/loss plot")
    args = vars(ap.parse_args()) 
    return args


if __name__=='__main__':  
    args = args_parse()
    if args['augment'] == True:
        filepath ='./aug/train/'

    train(args)  
    #predict()  

预测

import cv2
import random
import numpy as np
import os
import argparse
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder  
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

TEST_SET = ['1.png','2.png','3.png']

image_size = 256

classes = [0. ,  1.,  2.,   3.  , 4.]  
  
labelencoder = LabelEncoder()  
labelencoder.fit(classes) 

def args_parse():
# construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-m", "--model", required=True,
        help="path to trained model model")
    ap.add_argument("-s", "--stride", required=False,
        help="crop slide stride", type=int, default=image_size)
    args = vars(ap.parse_args())    
    return args

    
def predict(args):
    # load the trained convolutional neural network
    print("[INFO] loading network...")
    model = load_model(args["model"])
    stride = args['stride']
    for n in range(len(TEST_SET)):
        path = TEST_SET[n]
        #load the image
        image = cv2.imread('./test/' + path)
        h,w,_ = image.shape
        padding_h = (h//stride + 1) * stride 
        padding_w = (w//stride + 1) * stride
        padding_img = np.zeros((padding_h,padding_w,3),dtype=np.uint8)
        padding_img[0:h,0:w,:] = image[:,:,:]
        padding_img = padding_img.astype("float") / 255.0
        padding_img = img_to_array(padding_img)
        print('src:'),padding_img.shape
        mask_whole = np.zeros((padding_h,padding_w),dtype=np.uint8)
        for i in range(padding_h//stride):
            for j in range(padding_w//stride):
                crop = padding_img[:3,i*stride:i*stride+image_size,j*stride:j*stride+image_size]
                _,ch,cw = crop.shape
                if ch != 256 or cw != 256:
                    print('invalid size!')
                    continue
                    
                crop = np.expand_dims(crop, axis=0)
                #print 'crop:',crop.shape
                pred = model.predict_classes(crop,verbose=2)
                pred = labelencoder.inverse_transform(pred[0])  
                #print (np.unique(pred))  
                pred = pred.reshape((256,256)).astype(np.uint8)
                #print 'pred:',pred.shape
                mask_whole[i*stride:i*stride+image_size,j*stride:j*stride+image_size] = pred[:,:]

        
        cv2.imwrite('./predict/pre'+str(n+1)+'.png',mask_whole[0:h,0:w])
        
    

    
if __name__ == '__main__':
    args = args_parse()
    predict(args)

  1. unet
    训练
#coding=utf-8
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import argparse
import numpy as np  
from keras.models import Sequential  
from keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation,Input  
from keras.utils.np_utils import to_categorical  
from keras.preprocessing.image import img_to_array  
from keras.callbacks import ModelCheckpoint  
from sklearn.preprocessing import LabelEncoder  
from keras.models import Model
from keras.layers.merge import concatenate
from PIL import Image  
import matplotlib.pyplot as plt  
import cv2
import random
import os
from tqdm import tqdm  
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
seed = 7  
np.random.seed(seed)  
  
#data_shape = 360*480  
img_w = 256  
img_h = 256  
#有一个为背景  
#n_label = 4+1  
n_label = 1
  
classes = [0. ,  1.,  2.,   3.  , 4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.,15.]
  
labelencoder = LabelEncoder()  
labelencoder.fit(classes)  

image_sets = ['1.png','2.png','3.png']
 

def load_img(path, grayscale=False):
    if grayscale:
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
    else:
        img = cv2.imread(path)
        img = np.array(img,dtype="float") / 255.0
    return img


filepath ='G:/unet/'

def get_train_val(val_rate = 0.25):
    train_url = []    
    train_set = []
    val_set  = []
    for pic in os.listdir(filepath + 'src'):
        train_url.append(pic)
    random.shuffle(train_url)
    total_num = len(train_url)
    val_num = int(val_rate * total_num)
    for i in range(len(train_url)):
        if i < val_num:
            val_set.append(train_url[i]) 
        else:
            train_set.append(train_url[i])
    return train_set,val_set

# data for training  
def generateData(batch_size,data=[]):  
    #print 'generateData...'
    while True:  
        train_data = []  
        train_label = []  
        batch = 0  
        for i in (range(len(data))): 
            url = data[i]
            batch += 1 
            img = load_img(filepath + 'src/' + url)
            img = img_to_array(img)  
            train_data.append(img)  
            label = load_img(filepath + 'label_1/' + url, grayscale=True)
            label = img_to_array(label)
            train_label.append(label)  
            if batch % batch_size==0: 
                #print 'get enough bacth!\n'
                train_data = np.array(train_data)  
                train_label = np.array(train_label)  
                yield (train_data,train_label)  
                train_data = []  
                train_label = []  
                batch = 0  
 
# data for validation 
def generateValidData(batch_size,data=[]):  
    #print 'generateValidData...'
    while True:  
        valid_data = []  
        valid_label = []  
        batch = 0  
        for i in (range(len(data))):  
            url = data[i]
            batch += 1  
            img = load_img(filepath + 'src/' + url)
            img = img_to_array(img)  
            valid_data.append(img)  
            label = load_img(filepath + 'label/' + url, grayscale=True)
            label = img_to_array(label)
            valid_label.append(label)  
            if batch % batch_size==0:  
                valid_data = np.array(valid_data)  
                valid_label = np.array(valid_label)  
                yield (valid_data,valid_label)  
                valid_data = []  
                valid_label = []  
                batch = 0  
  
  
def unet():
    inputs = Input(( img_w, img_h,3))

    conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(inputs)
    conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(pool1)
    conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(pool2)
    conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(pool3)
    conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(pool4)
    conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(conv5)

    up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=3)
    conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(up6)
    conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv6)

    up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=3)
    conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(up7)
    conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv7)

    up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=3)
    conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(up8)
    conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv8)

    up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=3)
    conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(up9)
    conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv9)

    conv10 = Conv2D(n_label, (1, 1), activation="sigmoid")(conv9)
    #conv10 = Conv2D(n_label, (1, 1), activation="softmax")(conv9)

    model = Model(inputs=inputs, outputs=conv10)
    model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
    return model


  
def train(args): 
    EPOCHS = 10
    BS = 32
    #model = SegNet()  
    model = unet()
    modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')  
    callable = [modelcheck]  
    train_set,val_set = get_train_val()
    train_numb = len(train_set)  
    valid_numb = len(val_set)  
    print ("the number of train data is",train_numb)  
    print ("the number of val data is",valid_numb)
    H = model.fit_generator(generator=generateData(BS,train_set),steps_per_epoch=train_numb//BS,epochs=EPOCHS,verbose=1,  
                    validation_data=generateValidData(BS,val_set),validation_steps=valid_numb//BS,callbacks=callable,max_q_size=1)  

    # plot the training loss and accuracy
    plt.style.use("ggplot")
    plt.figure()
    N = EPOCHS
    plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
    plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
    plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
    plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
    plt.title("Training Loss and Accuracy on U-Net Satellite Seg")
    plt.xlabel("Epoch #")
    plt.ylabel("Loss/Accuracy")
    plt.legend(loc="lower left")
    plt.savefig(args["plot"])

  

def args_parse():
    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-d", "--data", help="training data's path",
                    default=True)
    ap.add_argument("-m", "--model", required=True,
                    help="path to output model")
    ap.add_argument("-p", "--plot", type=str, default="plot.png",
                    help="path to output accuracy/loss plot")
    args = vars(ap.parse_args()) 
    return args


if __name__=='__main__':  
    args = args_parse()
    filepath = args['data']
    train(args)  
    #predict()  

预测

import cv2
import random
import numpy as np
import os
import argparse
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder  
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

TEST_SET = ['1.png','2.png','3.png']

image_size = 256

classes = [0. ,  1.,  2.,   3.  , 4.]  
  
labelencoder = LabelEncoder()  
labelencoder.fit(classes) 

def args_parse():
# construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-m", "--model", required=True,
        help="path to trained model model")
    ap.add_argument("-s", "--stride", required=False,
        help="crop slide stride", type=int, default=image_size)
    args = vars(ap.parse_args())    
    return args

    
def predict(args):
    # load the trained convolutional neural network
    print("[INFO] loading network...")
    model = load_model(args["model"])
    stride = args['stride']
    for n in range(len(TEST_SET)):
        path = TEST_SET[n]
        #load the image
        image = cv2.imread('./test/' + path)
        h,w,_ = image.shape
        padding_h = (h//stride + 1) * stride 
        padding_w = (w//stride + 1) * stride
        padding_img = np.zeros((padding_h,padding_w,3),dtype=np.uint8)
        padding_img[0:h,0:w,:] = image[:,:,:]
        #padding_img = padding_img.astype("float") / 255.0
        padding_img = img_to_array(padding_img)
        print ('src:',padding_img.shape)
        mask_whole = np.zeros((padding_h,padding_w),dtype=np.uint8)
        for i in range(padding_h//stride):
            for j in range(padding_w//stride):
                crop = padding_img[:3,i*stride:i*stride+image_size,j*stride:j*stride+image_size]
                _,ch,cw = crop.shape
                if ch != 256 or cw != 256:
                    print ('invalid size!')
                    continue
                    
                crop = np.expand_dims(crop, axis=0) 
                pred = model.predict(crop,verbose=2)
                #print (np.unique(pred))  
                pred = pred.reshape((256,256)).astype(np.uint8)
                #print 'pred:',pred.shape
                mask_whole[i*stride:i*stride+image_size,j*stride:j*stride+image_size] = pred[:,:]

        
        cv2.imwrite('./predict/pre'+str(n+1)+'.png',mask_whole[0:h,0:w])

    
if __name__ == '__main__':
    args = args_parse()
    predict(args)
  1. pspnet
    pspnet实现详见这位大佬的博客https://blog.csdn.net/ziyouyi111/article/details/80416935
  2. deeplabv3+
    deeplabv3+找官方的博客实现就好了,这里写一下遇到的bug和一些注意事项
    1.对于tfrecord的制作,要看清图片格式,最好图片格式都是三通道的png
    2.如果训练自己的数据集,可以在utils中调整各类的权重
    3.训练过程中,要提前下载好预训练模型,注意自己的bs大小,理论上越大越好
    4.预测图片时要注意前宽还是后宽,不要调反了
    5.看miou-----------------eval.py
    6.看验证集预测情况----------vis.py
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值