Segnet–Unet–Pspnet–Deeplabv3+语义分割的代码实现
做语义分割的话,第一步就是要制作数据集了,当然你也可以找官方的数据集进行训练,下面我们就先说明如何制作数据集。
- 官方数据集:1.coco 2.cityscapes
- 制作自己的数据集
1.首先看网络所要求的数据集格式,像segnet,unet,这些网络,所要求的的数据集,应包含两个文件夹
label是一个8位的灰度图,每一个灰度值对应于原图中的一个类
src是语义分割的原图。这里注意要根据自己电脑的显存大小切割合适的图片尺寸大小,不然显存会爆炸。QWQ详细制作数据集的代码在我的博客里有写到https://mp.csdn.net/mdeditor/94402617#
那么对于pspnet,制作数据集的时候不仅要做出label和src,而且还要做一个list.txt,这里存放着label和src的地址。
对于deeplabv3+,它需要在制作好图片以及list之后还需要制作tfrecord
然后用官方的程序,制作tfrecord
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts PASCAL VOC 2012 data to TFRecord file format with Example protos.
PASCAL VOC 2012 dataset is expected to have the following directory structure:
+ pascal_voc_seg
- build_data.py
- build_voc2012_data.py (current working directory).
+ VOCdevkit
+ VOC2012
+ JPEGImages
+ SegmentationClass
+ ImageSets
+ Segmentation
+ tfrecord
Image folder:
./VOCdevkit/VOC2012/JPEGImages
Semantic segmentation annotations:
./VOCdevkit/VOC2012/SegmentationClass
list folder:
./VOCdevkit/VOC2012/ImageSets/Segmentation
This script converts data into sharded data files and save at tfrecord folder.
The Example proto contains the following fields:
image/encoded: encoded image content.
image/filename: image filename.
image/format: image file format.
image/height: image height.
image/width: image width.
image/channels: image channels.
image/segmentation/class/encoded: encoded semantic segmentation content.
image/segmentation/class/format: semantic segmentation file format.
"""
import math
import os.path
import sys
import build_data
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('image_folder',
'./pro/JPEGImages',
'Folder containing images.')
tf.app.flags.DEFINE_string(
'semantic_segmentation_folder',
'./pro/SegmentationClass',
'Folder containing semantic segmentation annotations.')
tf.app.flags.DEFINE_string(
'list_folder',
'./pro/ImageSets/Segmentation',
'Folder containing lists for training and validation')
tf.app.flags.DEFINE_string(
'output_dir',
'./pro/tfrecord',
'Path to save converted SSTable of TensorFlow examples.')
_NUM_SHARDS = 4
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
print(filenames)
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('png', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
#label_reader = build_data.ImageReader('tif', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
sys.stdout.flush()
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + 'png')
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + 'png')
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def main(unused_argv):
dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt'))
for dataset_split in dataset_splits:
_convert_dataset(dataset_split)
if __name__ == '__main__':
tf.app.run()
开始训练
- segnet
#coding=utf-8
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import argparse
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation
from keras.utils.np_utils import to_categorical
from keras.preprocessing.image import img_to_array
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import LabelEncoder
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import random
import os
from tqdm import tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
seed = 7
np.random.seed(seed)
#data_shape = 360*480
img_w = 256
img_h = 256
#有一个为背景
n_label = 16
classes = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10,11.,12.,13.,14.,15.]
labelencoder = LabelEncoder()
labelencoder.fit(classes)
# image_sets = ['1.png','2.png','3.png']
def load_img(path, grayscale=False):
if grayscale:
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
else:
img = cv2.imread(path)
img = np.array(img,dtype="float") / 255.0
return img
filepath ='D:/rssrai2019_semantic_segmentation/segnet_pic/'
def get_train_val(val_rate = 0.25):
train_url = []
train_set = []
val_set = []
for pic in os.listdir(filepath + 'src'):
train_url.append(pic)
random.shuffle(train_url)
total_num = len(train_url)
val_num = int(val_rate * total_num)
for i in range(len(train_url)):
if i < val_num:
val_set.append(train_url[i])
else:
train_set.append(train_url[i])
return train_set,val_set
# data for training
def generateData(batch_size,data=[]):
#print 'generateData...'
while True:
train_data = []
train_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'src/' + url)
img = img_to_array(img)
train_data.append(img)
label = load_img(filepath + 'label/' + url, grayscale=True)
label = img_to_array(label).reshape((img_w * img_h,))
# print label.shape
train_label.append(label)
if batch % batch_size==0:
#print 'get enough bacth!\n'
train_data = np.array(train_data)
train_label = np.array(train_label).flatten()
train_label = labelencoder.transform(train_label)
train_label = to_categorical(train_label, num_classes=n_label)
train_label = train_label.reshape((batch_size,img_w * img_h,n_label))
yield (train_data,train_label)
train_data = []
train_label = []
batch = 0
# data for validation
def generateValidData(batch_size,data=[]):
#print 'generateValidData...'
while True:
valid_data = []
valid_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'src/' + url)
img = img_to_array(img)
valid_data.append(img)
label = load_img(filepath + 'label/' + url, grayscale=True)
label = img_to_array(label).reshape((img_w * img_h,))
# print label.shape
valid_label.append(label)
if batch % batch_size==0:
valid_data = np.array(valid_data)
valid_label = np.array(valid_label).flatten()
valid_label = labelencoder.transform(valid_label)
valid_label = to_categorical(valid_label, num_classes=n_label)
valid_label = valid_label.reshape((batch_size,img_w * img_h,n_label))
yield (valid_data,valid_label)
valid_data = []
valid_label = []
batch = 0
def SegNet():
model = Sequential()
#encoder
model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(img_w,img_h,3),padding='same',activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
#(128,128)
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(64,64)
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(32,32)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(16,16)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(8,8)
#decoder
model.add(UpSampling2D(size=(2,2)))
#(16,16)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(32,32)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(64,64)
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(128,128)
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(256,256)
model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h,3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(n_label, (1, 1), strides=(1, 1), padding='same'))
model.add(Reshape((n_label,img_w*img_h)))
#axis=1和axis=2互换位置,等同于np.swapaxes(layer,1,2)
model.add(Permute((2,1)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])
model.summary()
return model
def train(args):
EPOCHS = 10
BS = 16
model = SegNet()
modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')
callable = [modelcheck]
train_set,val_set = get_train_val()
train_numb = len(train_set)
valid_numb = len(val_set)
print ("the number of train data is",train_numb)
print ("the number of val data is",valid_numb)
H = model.fit_generator(generator=generateData(BS,train_set),steps_per_epoch=train_numb//BS,epochs=EPOCHS,verbose=1,
validation_data=generateValidData(BS,val_set),validation_steps=valid_numb//BS,callbacks=callable,max_q_size=1)
# plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
N = EPOCHS
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on SegNet Satellite Seg")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-a", "--augment", help="using data augment or not",
action="store_true", default=False)
ap.add_argument("-m", "--model", required=True,
help="path to output model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
help="path to output accuracy/loss plot")
args = vars(ap.parse_args())
return args
if __name__=='__main__':
args = args_parse()
if args['augment'] == True:
filepath ='./aug/train/'
train(args)
#predict()
预测
import cv2
import random
import numpy as np
import os
import argparse
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
TEST_SET = ['1.png','2.png','3.png']
image_size = 256
classes = [0. , 1., 2., 3. , 4.]
labelencoder = LabelEncoder()
labelencoder.fit(classes)
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="path to trained model model")
ap.add_argument("-s", "--stride", required=False,
help="crop slide stride", type=int, default=image_size)
args = vars(ap.parse_args())
return args
def predict(args):
# load the trained convolutional neural network
print("[INFO] loading network...")
model = load_model(args["model"])
stride = args['stride']
for n in range(len(TEST_SET)):
path = TEST_SET[n]
#load the image
image = cv2.imread('./test/' + path)
h,w,_ = image.shape
padding_h = (h//stride + 1) * stride
padding_w = (w//stride + 1) * stride
padding_img = np.zeros((padding_h,padding_w,3),dtype=np.uint8)
padding_img[0:h,0:w,:] = image[:,:,:]
padding_img = padding_img.astype("float") / 255.0
padding_img = img_to_array(padding_img)
print('src:'),padding_img.shape
mask_whole = np.zeros((padding_h,padding_w),dtype=np.uint8)
for i in range(padding_h//stride):
for j in range(padding_w//stride):
crop = padding_img[:3,i*stride:i*stride+image_size,j*stride:j*stride+image_size]
_,ch,cw = crop.shape
if ch != 256 or cw != 256:
print('invalid size!')
continue
crop = np.expand_dims(crop, axis=0)
#print 'crop:',crop.shape
pred = model.predict_classes(crop,verbose=2)
pred = labelencoder.inverse_transform(pred[0])
#print (np.unique(pred))
pred = pred.reshape((256,256)).astype(np.uint8)
#print 'pred:',pred.shape
mask_whole[i*stride:i*stride+image_size,j*stride:j*stride+image_size] = pred[:,:]
cv2.imwrite('./predict/pre'+str(n+1)+'.png',mask_whole[0:h,0:w])
if __name__ == '__main__':
args = args_parse()
predict(args)
- unet
训练
#coding=utf-8
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import argparse
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation,Input
from keras.utils.np_utils import to_categorical
from keras.preprocessing.image import img_to_array
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers.merge import concatenate
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import random
import os
from tqdm import tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
seed = 7
np.random.seed(seed)
#data_shape = 360*480
img_w = 256
img_h = 256
#有一个为背景
#n_label = 4+1
n_label = 1
classes = [0. , 1., 2., 3. , 4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.,15.]
labelencoder = LabelEncoder()
labelencoder.fit(classes)
image_sets = ['1.png','2.png','3.png']
def load_img(path, grayscale=False):
if grayscale:
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
else:
img = cv2.imread(path)
img = np.array(img,dtype="float") / 255.0
return img
filepath ='G:/unet/'
def get_train_val(val_rate = 0.25):
train_url = []
train_set = []
val_set = []
for pic in os.listdir(filepath + 'src'):
train_url.append(pic)
random.shuffle(train_url)
total_num = len(train_url)
val_num = int(val_rate * total_num)
for i in range(len(train_url)):
if i < val_num:
val_set.append(train_url[i])
else:
train_set.append(train_url[i])
return train_set,val_set
# data for training
def generateData(batch_size,data=[]):
#print 'generateData...'
while True:
train_data = []
train_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'src/' + url)
img = img_to_array(img)
train_data.append(img)
label = load_img(filepath + 'label_1/' + url, grayscale=True)
label = img_to_array(label)
train_label.append(label)
if batch % batch_size==0:
#print 'get enough bacth!\n'
train_data = np.array(train_data)
train_label = np.array(train_label)
yield (train_data,train_label)
train_data = []
train_label = []
batch = 0
# data for validation
def generateValidData(batch_size,data=[]):
#print 'generateValidData...'
while True:
valid_data = []
valid_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'src/' + url)
img = img_to_array(img)
valid_data.append(img)
label = load_img(filepath + 'label/' + url, grayscale=True)
label = img_to_array(label)
valid_label.append(label)
if batch % batch_size==0:
valid_data = np.array(valid_data)
valid_label = np.array(valid_label)
yield (valid_data,valid_label)
valid_data = []
valid_label = []
batch = 0
def unet():
inputs = Input(( img_w, img_h,3))
conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(inputs)
conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(pool1)
conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(pool2)
conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(pool3)
conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(pool4)
conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(conv5)
up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=3)
conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(up6)
conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv6)
up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=3)
conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(up7)
conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv7)
up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=3)
conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(up8)
conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv8)
up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=3)
conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(up9)
conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv9)
conv10 = Conv2D(n_label, (1, 1), activation="sigmoid")(conv9)
#conv10 = Conv2D(n_label, (1, 1), activation="softmax")(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
def train(args):
EPOCHS = 10
BS = 32
#model = SegNet()
model = unet()
modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')
callable = [modelcheck]
train_set,val_set = get_train_val()
train_numb = len(train_set)
valid_numb = len(val_set)
print ("the number of train data is",train_numb)
print ("the number of val data is",valid_numb)
H = model.fit_generator(generator=generateData(BS,train_set),steps_per_epoch=train_numb//BS,epochs=EPOCHS,verbose=1,
validation_data=generateValidData(BS,val_set),validation_steps=valid_numb//BS,callbacks=callable,max_q_size=1)
# plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
N = EPOCHS
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on U-Net Satellite Seg")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--data", help="training data's path",
default=True)
ap.add_argument("-m", "--model", required=True,
help="path to output model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
help="path to output accuracy/loss plot")
args = vars(ap.parse_args())
return args
if __name__=='__main__':
args = args_parse()
filepath = args['data']
train(args)
#predict()
预测
import cv2
import random
import numpy as np
import os
import argparse
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
TEST_SET = ['1.png','2.png','3.png']
image_size = 256
classes = [0. , 1., 2., 3. , 4.]
labelencoder = LabelEncoder()
labelencoder.fit(classes)
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="path to trained model model")
ap.add_argument("-s", "--stride", required=False,
help="crop slide stride", type=int, default=image_size)
args = vars(ap.parse_args())
return args
def predict(args):
# load the trained convolutional neural network
print("[INFO] loading network...")
model = load_model(args["model"])
stride = args['stride']
for n in range(len(TEST_SET)):
path = TEST_SET[n]
#load the image
image = cv2.imread('./test/' + path)
h,w,_ = image.shape
padding_h = (h//stride + 1) * stride
padding_w = (w//stride + 1) * stride
padding_img = np.zeros((padding_h,padding_w,3),dtype=np.uint8)
padding_img[0:h,0:w,:] = image[:,:,:]
#padding_img = padding_img.astype("float") / 255.0
padding_img = img_to_array(padding_img)
print ('src:',padding_img.shape)
mask_whole = np.zeros((padding_h,padding_w),dtype=np.uint8)
for i in range(padding_h//stride):
for j in range(padding_w//stride):
crop = padding_img[:3,i*stride:i*stride+image_size,j*stride:j*stride+image_size]
_,ch,cw = crop.shape
if ch != 256 or cw != 256:
print ('invalid size!')
continue
crop = np.expand_dims(crop, axis=0)
pred = model.predict(crop,verbose=2)
#print (np.unique(pred))
pred = pred.reshape((256,256)).astype(np.uint8)
#print 'pred:',pred.shape
mask_whole[i*stride:i*stride+image_size,j*stride:j*stride+image_size] = pred[:,:]
cv2.imwrite('./predict/pre'+str(n+1)+'.png',mask_whole[0:h,0:w])
if __name__ == '__main__':
args = args_parse()
predict(args)
- pspnet
pspnet实现详见这位大佬的博客https://blog.csdn.net/ziyouyi111/article/details/80416935 - deeplabv3+
deeplabv3+找官方的博客实现就好了,这里写一下遇到的bug和一些注意事项
1.对于tfrecord的制作,要看清图片格式,最好图片格式都是三通道的png
2.如果训练自己的数据集,可以在utils中调整各类的权重
3.训练过程中,要提前下载好预训练模型,注意自己的bs大小,理论上越大越好
4.预测图片时要注意前宽还是后宽,不要调反了
5.看miou-----------------eval.py
6.看验证集预测情况----------vis.py