leetcode4题 题解 翻译 C语言版 Python版

这是一篇关于LeetCode第4题的解决方案,目标是找出两个已排序数组的中位数,要求整体时间复杂度为O(log(m+n))。文章介绍了两种思路,一种是利用归并思想合并数组,另一种是不合并数组,通过不断选择较小和较大的元素来逼近中位数。提供了C语言和Python的实现代码。
摘要由CSDN通过智能技术生成

4. Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5
4. 两有序数组的中位数

有两个有序数组nums1和nums2,各自长度为m和n。

找到两个数组的中位数,整体的运行时间复杂度应该是O(log (m+n))。

例1:

nums1 = [1, 3]
nums2 = [2]

两数组的中位数是 2.0
例2:

nums1 = [1, 2]
nums2 = [3, 4]

两数组的中位数是 (2 + 3)/2 = 2.5

思路:

最简单的想法是合并两数组排序合取中位数,但是要排序的话肯定不满足题目要求的时间复杂度。那么可以借助两数组分别有序的特性,在合并过程中始终保持有序,也即是归并排序。合并完后找到中间两个数或中间一个数即可。

另一种思路是不合并数组,每次从两数组头部中选较小的去掉,从两数组尾部中选较大的去掉,直到最后就可以确定中位数了。

两种思路运行时间差不多,思路2不需要额外内存。


思路1C语言版:

double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
    int numsSize = nums1Size + nums2Size;
    int *nums = (int*)malloc(sizeof(int) * numsSize);
    int min, max;
    for (int i = 0, j = 0, k = 0; k < numsSize; ){
        if (i >= nums1Size){
            nums[k++] = nums2[j++];
        }
        else if (j >= nums2Size){
            nums[k++] = nums1[i++];
        }
        else {
            nums[k++] = nums1[i] < nums2[j] ? nums1[i++] : nums2[j++];
        }
    }
    if (numsSize % 2 == 0){
        min = nums[numsSize / 2 - 1];
        max = nums[numsSize / 2];
    }
    else {
        min = max = nums[numsSize / 2];
    }
    free(nums);
    return (double)(min + max) / 2;
}

思路2C语言版:

double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
    int min1 = 0, min2 = 0, max1 = nums1Size - 1, max2 = nums2Size - 1;
    int mid_min, mid_max;
    for(;max1 >= min1 || max2 >= min2;){    //至少有一条链还存在
        if (min1 > max1){   //如果链1不存在了
            mid_min = nums2[min2];  //取链2头尾
            mid_max = nums2[max2];
            min2++; //去掉链2头尾
            max2--;
        }
        else if (min2 > max2){  //如果链2不存在了
            mid_min = nums1[min1];  //取链1头尾
            mid_max = nums1[max1];
            min1++; //去年链1头尾
            max1--;
        }
        else{   //如果两链都存在
            if (nums1[min1] < nums2[min2]){ //如果链1头部最小
                mid_min = nums1[min1];  //取链1头部
                min1++; //去掉链1头部
            }
            else{   //如果链2头部最小
                mid_min = nums2[min2];  //取链2头部
                min2++; //去掉链2头部
            }
            //在去掉一个头部后可能出现某链为空的情况
            if (min1 > max1){   //如果链1变空
                mid_max = nums2[max2];  //取链2尾部
                max2--; //去掉链2尾部
            }
            else if (min2 > max2){  //如果链2变空
                mid_max = nums1[max1];  //取链1尾部
                max1--; //去掉链1尾部
            }
            //如果两链都不为空
            else if (nums1[max1] > nums2[max2]){ //如果链1尾部最大
                mid_max = nums1[max1];  //取链1尾部
                max1--; //去掉链1尾部
            }
            else{   //如果链2尾部最大
                mid_max = nums2[max2];  //取链2尾部
                max2--; //去掉链2尾部
            }
        }
    }
    return (double)(mid_min + mid_max) / 2;
}



思路1Python版:

class Solution(object):
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        nums = [0] * (len(nums1) + len(nums2))  # 合并列表
        i, j, k = 0, 0, 0
        while k < len(nums):    # 循环合并
            if i >= len(nums1): # 如果只剩列表2
                nums[k] = nums2[j]  # 添加列表2的元素
                j += 1
            elif j >= len(nums2):   # 如果只剩列表1的元素
                nums[k] = nums1[i]  # 添加列表1的元素
                i += 1
            else:   # 如果两列表都存在
                if nums1[i] < nums2[j]: # 取两列表头部较小值
                    nums[k] = nums1[i]
                    i += 1
                else:
                    nums[k] = nums2[j]
                    j += 1 
            k += 1  # 移动合并后列表的游标
        mi, ma = 0, 0
        if len(nums) % 2 == 0:  # 如果合并后的列表偶数个元素
            mi = nums[len(nums) / 2 - 1]
            ma = nums[len(nums) / 2]
        else:   # 奇数个
            mi = ma = nums[len(nums) / 2]
        return (float)(mi + ma) / 2












评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值