LM Studio本地部署大模型,CPU就能玩的本地模型-亲测成功
前面介绍Ollama的部署和使用,下面我们介绍下另一款比较好用的模型部署的客户端工具LM Studio。
官方地址:https://lmstudio.ai/
本地部署大模型,不需要GPU就能玩本地模型-亲测成功
Ollama前端页面调用大模型 知识问答 模型切换
LM Studio介绍
LM Studio 是一款功能强大、易于使用的桌面应用程序,用于在本地机器上实验和评估大型语言模型(LLMs)。
与Ollama的区别
Ollama
-
用户体验:以其简单和易于安装而闻名,特别适合技术用户。
-
可定制性:提供创建定制语言模型和运行各种预训练模型的灵活性。
-
开源:完全开源,有助于提高透明度和社区参与。
-
支持的操作系统:适用于 macOS、Linux 和 Windows。
LM Studio
-
功能集:提供更广泛的功能集,包括发现、下载和运行本地 LLM,以及应用内聊天界面以及与 OpenAI 兼容的本地服务器接口。
-
友好性:与 Ollama 相比,被认为对用户界面更加友好。
-
模型选择:提供来自 Hugging Face 等更广泛的模型选择。
-
支持的操作系统:适用于 M1/M2/M3 Mac 或具有支持 AVX2 处理器的 Windows PC,Linux。
LM Studio安装运行
官方下载对应的系统版本,我这里使用windows系统介绍,官方下载地址:https://lmstudio.ai/
我这里下载的版本是:LM-Studio-0.2.31-Setup.exe 直接双击运行安装,这里不做详情说明。
安装完后运行如下图所示:

设置模型保存目录:注意,模型目录最好不要有中文特殊符号,最好是英文字母

LM Studio无法在线搜索和下载模型失败的问题处理
模型的搜素和下载,需要访问:https://huggingface.co/ 这个网站很多时候都是直接访问不了的。
更改下载配置
找到目录:C:\Users\admin(用户目录).cache\lm-studio

用户编辑器打开文件:downloads.json
用hf-mirror.com替换https://huggingface.co/

保存后重启LM Studio软件就可以了。
LM Studio离线导入部署模型
我们可以从站点下载模型文件,然后导入到LM Studio。
访问huggingface官网或镜像站点,下载模型文件
huggingface官网:https://hf-mirror.com/lmstudio-ai/gemma-2b-it-GGUF
镜像站点:https://hf-mirror.com/lmstudio-ai/gemma-2b-it-GGUF/tree/main

下载模型文件后按照目录层级放置到本地路径
导入模型:选择模型在本地目录的位置

运行模型
点击AI Chat,选择对应模型然后会自动加载到内存


然后下面的输入框,输入想要的内容就可以与本地大模型进行对话了。
以API服务的方式调用模型
Local Server:除了UI界面的chat对话使用之外,也可以在本地启动服务器,使用API接口进行调试。包括curl、python等方式。
点击Local Server,然后点击Start Server按钮,就会启动一个http服务,默认监听的端口:1234

参考连接:
https://blog.csdn.net/robinfoxnan/article/details/139336901
https://blog.csdn.net/2301_81888214/article/details/144499788
https://blog.csdn.net/easylife206/article/details/139105830
https://blog.csdn.net/codelearning/article/details/137745669
1万+

被折叠的 条评论
为什么被折叠?



