差分信号,差分对和耦合(三)——奇模&偶模、差分阻抗&奇模阻抗、共模阻抗&偶模阻抗

奇模和偶模是差分对的两种工作模式,对于无失真信号传输至关重要。奇模是通过在两条线施加相同信号实现,消除了耦合电流,而偶模则是通过施加相反信号,使得噪声在两条线间相互抵消。差分阻抗是奇模状态下的关键参数,而共模阻抗对应偶模状态。耦合影响着这些阻抗,影响信号质量。理解并优化这些模式有助于提高高速数字设计的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奇模和偶模(ODD AND EVEN MODES)

对于一个差分对,如果在一条线中加0V-1V的变化信号,在另一条线加0V的持续信号,随着信号的传输,两条线之间会出现远端串扰,在第二条线上会出现噪声,由于噪声的影响,第一条线的信号会减弱。

如果要实现无失真的传输,在边缘耦合微带线中,有如下两种方法:

1.给微带差分线的每条线施加相同的信号,比如都施加0v-1v的信号,此时,两条信号线之间的dV/dt为0,不存在容性耦合电流,dI/dt也为0,感性耦合电流是相同的 。一条线对另一条线产生作用时,也会受到另一条线的反作用,这样的话每条信号线上的电压模式都维持不变。

2.给微带差分线的每条线施加相反的信号,比如给线1施加0v - 1v的信号,给线2施加0v - -1v的信号。在线1中的信号会在线2生成远端噪声,该噪声有一个负向脉冲,这会降低线1上的电压。但是,线2上的反方向信号同时也会在线1上生成正向的远端噪声脉冲,这个正向的远端噪声脉冲恰好补充了线1上下降的电压,这样,这种差分模式能够实现无失真信号传播。(原文说的比较绕,以上是简洁描述。the magnitude of the positive noise generated in line 1 is exactly the same as the magnitude of the drop in the signal in line 1 from the loss due to its noise to line 2.)

当差分线中以相同的驱动电压驱动时,我们称之为偶模,当以相反的驱动电压驱动时,我们称之为奇模。

模态是差分对的固有特性,奇模可以由单纯的差分信号激励,偶模可以由单纯的共模信号激励。注意,奇模和偶模指的是差分线特殊的固有模态,而差分和共模指的是加在差分线上的特殊信号,一定不要混淆。

对于一条走线的阻抗,当其被差分信号驱动为奇模时,走线的阻抗称为奇模阻抗,被共模信号驱动为偶模时,走线的阻抗称为偶模阻抗。

差分阻抗和奇模阻抗

差分阻抗是每条线与返回路径之间阻抗的串联。没有耦合时,差分阻抗等于两条单线的特性阻抗之和,当有耦合时,每条线的特性阻抗就会改变。

当差分对由差分信号驱动时,根据前文所述,此时差分对处于奇模状态,每条单线的特性阻抗称为奇模特性阻抗,差分对的差分阻抗等于两倍的奇模阻抗,即

Z_{diff}=2\times Z_{odd}

 上图中,差分阻抗是两条信号线之间的等效阻抗。

奇模阻抗与差分阻抗有直接的关系,但是并不等价,差分阻抗是差分信号感受到的阻抗,奇模阻抗是差分对被驱动为奇模状态时单线的阻抗。

共模阻抗与偶模阻抗

共模信号是两条信号线之间的电压平均值,纯共模信号是差分信号为0的信号。这意味着两条线之间没有电压差,具有相同的信号电压。

共模信号使差分对处于偶模状态,此时,每条线的特性阻抗称为偶模特性阻抗。共模阻抗等于两条线的偶模特性阻抗的并联。

Z_{common}=Z_{equiv}=\frac{Z_{even}\times Z_{even}}{Z_{even}+Z_{even}}=\frac{1}{2}Z_{even}

上图中,共模阻抗是差分线和参考平面之间的阻抗。

通常来说,共模信号的阻抗比较小,共模信号的每条信号线和返回路径之间的电压相同,但是从差分线进入从返回平面流出的电流是每条单线中电流的两倍。

对于两条无耦合的50Ohm传输线构成的差分对,奇模阻抗和偶模阻抗相同,均为50Ohm,差分阻抗为2x50=100Ohm,共模阻抗为1/2x50=25Ohm。

如果考虑差分对内的耦合,每条单线的奇模阻抗将会减小,偶模阻抗将会增加,差分阻抗将会减小,共模阻抗将会增加。

 对于表层线,阻焊也会影响信号线的单端阻抗,包括奇模阻抗,下图是阻焊层变化时紧耦合差分线各类阻抗变化的情况。

Just when you thought you had mastered Zo, the characteristic impedance of a PCB trace, along comes a data sheet that tells you to design for a specific differential impedance. And to make things tougher, it says things like: “… since the coupling of two traces can lower the effective impedance, use 50 Ohm design rules to achieve a differential impedance of approximately 80 Ohms!” Is that confusing or what!! This article shows you what differential impedance is. But more than that, it discusses why it is, and shows you how to make the correct calculations. Single Trace: Figure 1(a) illustrates a typical, individual trace. It has a characteristic impedance, Zo, and carries a current, i. The voltage along it, at any point, is (from Ohm’s law) V = Zo*i. General case, trace pair: Figure 1(b) illustrates a pair of traces. Trace 1 has a characteristic impedance Z11, which corresponds to Zo, above, and current i1. Trace 2 is similarly defined. As we bring Trace 2 closer to Trace 1, current from Trace 2 begins to couple into Trace 1 with a proportionality constant, k. Similarly, Trace 1’s current, i1, begins to couple into Trace 2 with the same proportionality constant. The voltage on each trace, at any point, again from Ohm’s law, is: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now let’s define Z12 = k*Z11 and Z21 = k*Z22. Then, Eqs. 1 can be written as: V1 = Z11 * i1 + Z12 * i2 Eqs. 2 V2 = Z21 * i1 + Z22 * i2 This is the familiar pair of simultaneous equations we often see in texts. The equations can be generalized into an arbitrary number of traces, and they can be expressed in a matrix form that is familiar to many of you. Special case, differential pair: Figure 1(c) illustrates a differential pair of traces. Repeating Equations 1: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now, note that in a carefully designed and balanced situation, Z11 = Z22 = Zo, and i2 = -i1 This leads (with a little manipulation) to: V1 = Zo * i1 * (1-k)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孟boy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值