基于MATLAB的B样条曲线插值算法

文章介绍了如何使用MATLAB的样条工具箱中的spapi函数,结合累加弦长参数化方法来构建一条3次B样条曲线,使其通过给定的5个数据点。首先进行累加弦长参数化处理,然后调用spapi函数进行插值,并绘制出曲线及切线进行验证。
摘要由CSDN通过智能技术生成

问题

​ 给定 5 5 5个数据点 Q 0 = ( − 2 , 1 ) , Q 1 = ( 0 , 0 ) , Q 2 = ( 1 , 0 ) , Q 3 = ( 3 , 5 ) , Q 4 = ( 4 , 2 ) \boldsymbol Q_0=(-2,1), \boldsymbol Q_1=(0,0),\boldsymbol Q_2=(1,0), \boldsymbol Q_3=(3,5), \boldsymbol Q_4=(4,2) Q0=(2,1),Q1=(0,0),Q2=(1,0),Q3=(3,5),Q4=(4,2), 结合累加弦长参数化方法及 3 3 3次样条插值方法给出一条 3 3 3次B样条曲线通过这 5 5 5个点.

工具

​ 为了解决上述问题, 我们采用MATLAB样条工具箱中的spapi​函数进行B样条曲线插值. 下面对需要用到的样条工具箱中的函数进行一个简要的说明, 关于样条工具箱更多的功能介绍可翻看之前的博客Matlab样条工具箱及曲线拟合_matlab 拟合工具箱_Daytoy Studio的博客-CSDN博客

名称功能
spapi插值生成B样条函数
fnval计算某点处样条函数的值
fnder求样条函数的导数
fnplt画样条曲线图

算法步骤

  • 将输入数据点进行累加弦长参数化, 假设有 m m m个点 { Q i } i = 1 m \{Q_i\}_{i=1}^{m} {Qi}i=1m, 则有

t 1 = 0 , t m = 1 , t i = t i − 1 + ∥ Q i − Q i − 1 ∥ / ∑ j = 1 m ∥ Q j − Q j − 1 ∥ , i = 2 , . . . , m − 1. t_1=0,t_m=1,t_i=t_{i-1}+\| Q_i-Q_{i-1}\|/\sum_{j=1}^m\|Q_j-Q_{j-1}\|,i=2,...,m-1. t1=0,tm=1,ti=ti1+QiQi1∥/j=1mQjQj1,i=2,...,m1.

累加弦长法是目前最常用的参数化方法, 它反映了数据点按弦长的分布情况, 其它参数化方法还包括均匀参数化, 向心参数化等.

  • 利用工具箱函数spapi进行 3 3 3次B样条插值, 并可以画出图像验证生成的曲线是否严格经过已知数据点;
  • 为了便于后续的应用, 这里增加了一步求导数, 并将其以切矢的形式画出验证是否与曲线相切.

实验结果

Binterpolation

至此, 上述一个简单的B样条曲线插值问题得以解决, 这里主要是为了给后续的工程应用进行一个铺垫, 下面给出具体的代码.

Code

function [T] = CumuPara(P)

%累加弦长参数化
%P输入数据点, 以列向量组成的矩阵, T累加弦长参数化得到的参数

m=size(P,2);%数据点个数
T=zeros(1,m);
sum_chord=0;
for j=1:m-1
    sum_chord=sum_chord + norm(P(:,j+1)-P(:,j),2);
end
chord=0;
for i=2:m-1
    chord=chord+norm(P(:,i)-P(:,i-1),2);
    T(i)=chord/sum_chord;
end
T(m)=1;
end
% 输入数据点
P=[-2,0,1,3,4;...
    1,0,0,5,2];
figure;
scatter(P(1,:),P(2,:),'bo');
hold on

% 累加弦长参数化
T=CumuPara(P);

% B样条阶数
k=4;

% 3次B样条插值
sp=spapi(k,T,P);

% 画图
fnplt(sp,'r-');
hold on

% 计算导数值
dsp=fnder(sp,1);
dp=fnval(dsp,T);

% 切矢画图
len=size(T,2);

for i=1:len
    dir=dp(:,i)/norm(dp(:,i));
    plot([P(1,i),P(1,i)+dir(1)],[P(2,i),P(2,i)+dir(2)],'k'); % 切矢
    hold on
end

Reference

@book{王仁宏2008计算几何教程,
  title={计算几何教程},
  author={王仁宏 and 李崇君 and 朱春钢},
  publisher={计算几何教程},
  year={2008},
}
### 回答1: 机器人肢体的运动控制离不开关节空间的描述和计算。在机器人行业中,B样条曲线是一种常用的曲线插值方法,可以帮助机器人在不同的路径上运动。 B样条曲线是一种数学曲线,在计算机图形学,计算机辅助设计和机器人控制等领域都有广泛的应用。B样条曲线由基函数和控制点组成。基函数是一组多项式函数,可以通过增加或删除控制点来改变曲线形状。控制点是一组用于定义曲线形状的点,其位置和数量可以影响曲线的形状。 在机器人运动控制中,B样条曲线可以用来描述机器人关节的运动轨迹。可以通过控制点来控制机器人的关节角度,从而控制机器人移动到不同的位置和姿态。Matlab是一种常用的科学计算软件,可以帮助工程师和科学家快速编写和测试机器人运动控制程序,包括机器人关节空间B样条曲线程序。 总之,机器人关节空间B样条曲线程序在机器人运动控制中有着重要的作用,可以帮助机器人执行高效、稳定和灵活的任务。通过Matlab等科学计算软件,机器人行业的工程师和科学家们可以快速地设计、优化和测试机器人关节空间B样条曲线程序,为机器人的运动控制带来更高的效率和精确度。 ### 回答2: 机器人关节空间B样条曲线程序Matlab是一种用于机器人运动控制中的数学算法,它的主要功能是通过B样条曲线来描述机器人关节运动轨迹和速度规划。在机器人运动控制中,关节空间是一个重要且复杂的问题,而B样条曲线是一种能够很好地解决这个问题的方法。B样条曲线是由控制点和节点构成的,通过对控制点和节点的增减和调整,可以得到各种不同形状的曲线。在机器人运动控制中,用B样条曲线来描述机器人关节运动轨迹,能够更加灵活地控制机器人的运动,达到更加准确的目标。Matlab是一种流行的数学软件,它可以帮助用户实现机器人关节空间B样条曲线程序。使用Matlab程序,用户可以设计控制点和节点,计算曲线,以及对关节运动进行规划和控制。这样,机器人可以实现更加精确、高效的运动,从而更好地完成任务。总之,机器人关节空间B样条曲线程序Matlab是机器人运动控制领域的一项重要技术,它可以帮助机器人实现准确、灵活的关节运动,从而更好地完成任务。 ### 回答3: 机器人关节空间指的是机器人的所有关节所构成的空间。在工业、制造业和医疗等领域中,机器人常被用于生产和操作。机器人的动作由其各个关节的运动组合而成,并受限于每个关节的可受限运动范围。因此,对于机器人的运动规划和控制需要对机器人的关节空间进行分析和建模。 而B样条曲线,是一种常用于表示曲线的数学方法。B样条曲线利用基函数对曲线进行插值或逼近,能够方便地对曲线进行修改和控制。在机器人领域中,B样条曲线常被用于机器人的路径规划和轨迹生成。 Matlab是一款常用的科学计算和数值分析软件。Matlab提供了丰富的数值分析工具和图形界面,可以方便地进行机器人关节空间的分析和建模,同时也提供了B样条曲线的相关函数和工具。因此,结合Matlab的强大数值计算和可视化能力,可以更加高效地进行机器人关节空间和B样条曲线程序的设计和实现,为机器人的运动规划和控制提供更好的支持。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值