MUSIC算法-呼吸心跳信号检测方法(五)

本文探讨使用MUSIC算法结合带通滤波检测呼吸心跳信号的方法。通过设置信号个数参数,有效分离呼吸与心跳信号,实现高精度的心跳频率检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

呼吸心跳信号检测方法(一)

数据采集-呼吸心跳信号检测方法(二)

信号建模-呼吸心跳信号检测方法(三)

滤波算法-呼吸心跳信号检测方法(四)


文章目录

前言

一、MUSCI(多重信号分类)检测算法

二、实测数据分析

2.1  MUSCI检测算法

2.2 结合带通滤波的MUSIC算法分析

 总结


前言

      从过滤后的频谱图可以看出,心跳信号明显强于其他干扰信号,但其他干扰信号仍有较大分量存在,为了更好的检测出心跳信号的频率,在待处理的数据不变的情况下,本项目探究了信号(单频复信号)个数参数的设置与最终利用MUSIC算法得到的频谱的关系,并通过两者间的关系结合带通滤波来实现心跳频率的检测。


一、MUSCI(多重信号分类)检测算法

        由于呼吸造成的体表微动并不是标准的正弦形式的运动,因此呼吸信号的频率分量包含了呼吸频率的谐波分量成分,这些谐波分量成分可能会对心跳信号造成干扰,因此可以利用MUSIC算法得到的高分辨频谱图来分析呼吸谐波频率与心跳频率的混叠程度。

        MUSIC算法的基本原理是:首先对数据进行统计得到协方差矩阵,然后对协方差矩阵进行代数运算处理,得到信号子空间和噪声子空间。最后利用它们的正交性来得到信号数据的高分辨频谱图。

       由于雷达回波的相位信息得到的人体体表微动信息主要由呼吸与心跳引起,而呼吸与心跳引起的体表运动在一定时间内是准周期的,则人体体表信号模型为:

y\left ( t \right )=x\left ( t \right )+e\left ( t \right )

式中x\left ( t \right )=\sum_{k=1}^{n}a_{k}e^{i\left ( \omega _{k}t+\phi _{k} \right )}\omega _{k}为呼吸频率与心跳频率以及各自的谐波成分,a_{k}是对应的强度;e\left ( t \right )为方差为\sigma ^{2}的高斯噪声。

         记\tilde{y}\left ( t \right )=\left [ y\left ( t \right ), y\left ( t-1 \right ), \cdots ,y\left ( t -m+1\right ) \right ]^{T},m>n,则可得其协方差矩阵:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【杨(_> <_)】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值