系列文章目录
文章目录
前言
从过滤后的频谱图可以看出,心跳信号明显强于其他干扰信号,但其他干扰信号仍有较大分量存在,为了更好的检测出心跳信号的频率,在待处理的数据不变的情况下,本项目探究了信号(单频复信号)个数参数的设置与最终利用MUSIC算法得到的频谱的关系,并通过两者间的关系结合带通滤波来实现心跳频率的检测。
一、MUSCI(多重信号分类)检测算法
由于呼吸造成的体表微动并不是标准的正弦形式的运动,因此呼吸信号的频率分量包含了呼吸频率的谐波分量成分,这些谐波分量成分可能会对心跳信号造成干扰,因此可以利用MUSIC算法得到的高分辨频谱图来分析呼吸谐波频率与心跳频率的混叠程度。
MUSIC算法的基本原理是:首先对数据进行统计得到协方差矩阵,然后对协方差矩阵进行代数运算处理,得到信号子空间和噪声子空间。最后利用它们的正交性来得到信号数据的高分辨频谱图。
由于雷达回波的相位信息得到的人体体表微动信息主要由呼吸与心跳引起,而呼吸与心跳引起的体表运动在一定时间内是准周期的,则人体体表信号模型为:
式中,
为呼吸频率与心跳频率以及各自的谐波成分,
是对应的强度;
为方差为
的高斯噪声。
记,则可得其协方差矩阵: