[论文笔记]BGE

本文介绍了BGE,一个由智源开源的中文语义向量模型,以及配套的C-Pack资源包,包括中文文本嵌入基准C-MTEB、大规模文本对C-MTP和C-TEM模型系列。C-MTEB包含35个数据集,用于全面评估文本嵌入性能。BGE模型在C-MTEB上的表现超越了现有中文文本嵌入模型,其训练方法结合了预训练、对比学习和任务微调,提升了模型的通用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

今天介绍论文BGE,是智源开源的语义向量模型,BAAI General Embedding。

image-20231031170732921

作者发布了C-Pack,一套显著推进中文嵌入领域的资源包。包括三个重要资源: 1) C-MTEB是一个全面的中文文本嵌入基准,涵盖了6个任务和35个数据集。 2) C-MTP是一个从标记和未标记的中文语料库中选择的大规模文本嵌入数据集。 3) C-TEM是一个覆盖多种规模的嵌入模型系列。

作者提出的BGE在C-MTEB上的表现超过了先前所有的中文文本嵌入模型,还整合和优化了C-TEM的整套训练方法。

总体介绍

文本嵌入是NLP中一个长期的主题。广泛的应用场景需要一个统一的嵌入模型,能在任何应用场景下处理各种任务。比如,问答、语言建模、对话等。然而,学习通用文本嵌入比任务专一的文本嵌入具有更多的挑战,在于:

  • 数据 开发通用领域文本嵌入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值