引言
今天介绍论文BGE,是智源开源的语义向量模型,BAAI General Embedding。
作者发布了C-Pack,一套显著推进中文嵌入领域的资源包。包括三个重要资源: 1) C-MTEB是一个全面的中文文本嵌入基准,涵盖了6个任务和35个数据集。 2) C-MTP是一个从标记和未标记的中文语料库中选择的大规模文本嵌入数据集。 3) C-TEM是一个覆盖多种规模的嵌入模型系列。
作者提出的BGE在C-MTEB上的表现超过了先前所有的中文文本嵌入模型,还整合和优化了C-TEM的整套训练方法。
总体介绍
文本嵌入是NLP中一个长期的主题。广泛的应用场景需要一个统一的嵌入模型,能在任何应用场景下处理各种任务。比如,问答、语言建模、对话等。然而,学习通用文本嵌入比任务专一的文本嵌入具有更多的挑战,在于:
- 数据 开发通用领域文本嵌入