论文阅读:BGE M3-Embedding——通过自知识提取实现多语言、多功能、多粒度的文本嵌入

M3-Embedding是一个通用的文本嵌入模型,支持100多种语言,能进行多语言、跨语言检索,并处理不同粒度的输入。模型通过自知识提取提高训练质量,融合稠密、稀疏和多向量检索,处理长文档能力出色。在多语言检索、跨语言检索和长文档检索任务中展现出优越性能。
摘要由CSDN通过智能技术生成

论文链接
模型和代码

论文名:BGE M3-Embedding: Multi-Lingual, Multi-Functionality,
Multi-Granularity Text Embeddings Through Self-Knowledge Distillation

Abstract

本文提出了一种新的嵌入模型,称为M3嵌入,以其在多语言、多功能和多粒度方面的多功能性而著称。它可以支持100多种工作语言,在多语言和跨语言检索任务中具有最先进的性能。它可以同时执行嵌入模型的三种常见检索功能:密集检索、多向量检索和稀疏检索,为真实世界的IR应用提供了统一的模型基础。它能够处理不同粒度的输入,从短句到多达8192个token的长文档。M3-Embedding的有效训练包括以下技术贡献。我们提出了一种新的自我知识提取方法,其中来自不同检索功能的相关性得分可以被整合为教师信号,以提高训练质量。我们还优化了批处理策略,实现了大批量和高训练吞吐量,以确保嵌入的区分度。据我们所知,M3-Embedding是第一个实现如此强大的通用性的嵌入模型。

1. Introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值