分层抽样

1.sampleByKey

import org.apache.spark.{SparkConf, SparkContext}
object testVector {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local")
    .setAppName("testVector");
    val sc = new SparkContext(conf);
    var data = sc.textFile("kimi.txt")
    .map(row => {
      if(row.length == 3) //判定字符数
        (row,1)    //建立对应Map
      else (row,2)
    })
    val fractions: Map[String,Double] = Map("aa" -> 2);//设定抽样格式
    val approxSample = data.sampleByKey(withReplacement = false,fractions,0);//计算抽样样本
    approxSample.foreach(println);
  }
}
程序结果:(aa,2)

withReplacement:每次抽样是否放回

fractions:定义分类条件和采样几率。

seed:随机数种子


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值