电子元器件学习-电容

分类

封装分类:

直插电容

贴片电容

MLCC 片式多层陶瓷电容器

常用的MLCC NP0(C0G),X7R,X5R,Z5U,Y5V等

NP0,C0G温度特性平稳,容值小,价格高。

X7R,X5R介于上下这两者之间

Z5U,Y5V温度特性大,容值大,价格低

C0G具有最高的温度补偿特性,常作旁路电容耦合电容

X7R是温度稳定型陶瓷电容器,适合要求不高的工业应用

Z5U是小尺寸和低成本,适合应用去耦电路

Y5V是温度特性最差,但容量大,可取代低容铝电解电容

NP0电容(C0G)

NP0是一种常用的具有温度补偿特性的单片陶瓷电容器

NP0电容器是电容量和介质损耗最稳定的电容器之一

NP0电容器在温度-55℃-125℃时容量变化位0±30ppm/℃

电容量随频率的变化小于±0.3▲C

NP0电容的漂移或滞后小于±0.05%

NP0电容器适合用于振荡器和谐振器的槽路电容,以及高频电路中的耦合电容

NP0虽然很完美,但是有个缺点,不能做大容量,0.47uF C0G已经算是很大了,但价格较贵

X7R,X5R,Y5V

X7R 表示在-55℃到+125℃其容量变化为15%,非线性

极性分类:

极性电容

直插电解电容

脚长的正,脚短的负,亮银边为-

贴片电解电容
固态电容
钽电容

分为黄钽和黑钽

黄钽:AVX>KEMET

黑钽:NEC>NICHICON和三星

尖头为正,另一边为负

银边为正,另外一边为负

无极性电容

参数

精度

5%就非常高了

温度系数(PPM)

耐压

电容电容量随着其两端的电压增大而减小

理论上电容耐压要比所处环境的电压最大值大即可,实际使用需要留有80%余量

钽电容接反必爆炸,必起火,再就是钽电容的耐压要留有50%余量

温度范围

电解电容一般使用105℃以下

150℃的高温应用钽电容和NP0电容

ESR

ESR非常重要,一般的DCDC电源输出端需要ESR极低的电容,一般可以选用MLCC电容,钽电容

在设计电路时,只要用到了芯片,就需要在此芯片VCC引脚放置0.1uF的陶瓷电容进行滤波

但是当供电的谐波频率高到一定的时候,电容中的ESL电感的作用就不可忽视了,再高的时候ESL

电感器主导作用,电容失去了滤波作用,这时候需要降低电容量。

也可以大小电容并联,容量越小的电容越靠近VCC引脚滤波效果

### 医学领域中马尔科夫模型的应用 在医学领域,马尔科夫链作为一种有效的数学工具被用来模拟各种随机过程,在疾病进展、治疗反应以及健康状态变化方面提供了有价值的见解[^1]。 #### 马尔科夫链基础概念 马尔科夫链描述了一种特殊的随机过程,该过程中系统的未来状态只取决于当前的状态而与过去的历史无关。这种特性使得它非常适合处理那些具有时间序列特性的医疗数据集。 #### 应用实例:糖尿病患者病情发展预测 为了更好地理解这一理论的实际应用场景,考虑一个简单的例子——利用马尔科夫链来预测糖尿病患者的病情发展趋势: 假设存在三种可能的健康状况:“正常血糖水平”,“前期糖尿病” 和 “确诊糖尿病”。可以定义转移矩阵表示不同状态下转换的概率分布情况如下表所示: | 当前/下一阶段 | 正常血糖水平 | 前期糖尿病 | 确诊糖尿病 | | --- | --- | --- | --- | | **正常血糖水平** | 0.85 | 0.14 | 0.01 | | **前期糖尿病** | 0.20 | 0.79 | 0.01 | | **确诊糖尿病** | 0.00 | 0.00 | 1.00 | 上述表格展示了每一对相邻时间段内个体从一种状态转移到另一种状态的可能性大小。例如,“正常血糖水平”的人在下一个时期保持同样状态的概率为85%,转向前驱型糖尿病的风险约为14%等等。 #### Python 实现案例 下面是一个简单版本的Python程序片段,用于演示如何创建并操作这样一个基本的马尔科夫链模型来进行预测: ```python import numpy as np class MarkovChain(object): def __init__(self, transition_matrix, states): self.transition_matrix = np.atleast_2d(transition_matrix) self.states = states def next_state(self, current_state): return np.random.choice( self.states, p=self.transition_matrix[self.states.index(current_state)], ) def simulate_markov_chain(chain, start_state='Normal', steps=10): state_sequence = [start_state] for _ in range(steps - 1): next_s = chain.next_state(state_sequence[-1]) state_sequence.append(next_s) return state_sequence if __name__ == "__main__": # 定义状态列表和对应的转移概率矩阵 health_states = ['Normal', 'Pre-Diabetes', 'Diabetes'] trans_probabilities = [ [0.85, 0.14, 0.01], [0.20, 0.79, 0.01], [0.00, 0.00, 1.00] ] mc_model = MarkovChain(trans_probabilities, health_states) simulation_result = simulate_markov_chain(mc_model, start_state="Normal", steps=10) print(simulation_result) ``` 这段代码实现了对给定初始条件下连续多个周期内的健康状态演变路径进行了仿真,并打印出了最终的结果序列。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

油门子z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值