题意:
在一群男女同学之间存在”浪漫关系”,且该关系只存在于男同学与女同学之间.现在给出你比如2号学生与4号学生有浪漫关系(但是没给出你到底2号是男同学还是4号是男同学).给出所有的关系,要你求出一个由学生构成的集合,满足该集合中任意两人都不存在”浪漫关系”。
思路:最大独立集。遇到这种求满足一定限制条件的所有集合中元素个数最大的问题,都可以尝试想最大独立集,且 需要分析一下是否能构成二分图,而且可以带着构建二分图的目的去想思路。
题目给的条件没有男女,所以可以将所有条件分解分成男和女两个集合,然后构建二分图,再进行求最大独立集即可。但是发现分解成两个集合不是很好操作,至少并查集就解决不了。查了一波,下面这张图解决的很好。
(图片来源)
所以,据上图思路,我们只需要对每个条件建立双向边,再进行求解最大匹配,最终进行n-ans/2即是答案。
代码:
#include <string.h>
#include <cstdio>
#define _c getchar()
using namespace std;
const int maxn = 505;
int G[maxn][maxn];
int match[maxn], vis[maxn];
int n;
int dfs(int cur)
{
for(int i = 0; i < n; ++i)
{
if(!G[cur][i] || vis[i]) continue;
vis[i] = 1;
if(match[i] == -1 || dfs(match[i]))
{
match[i] = cur;
return 1;
}
}
return 0;
}
int main()
{
int t, k, x, ans;
while(~scanf("%d", &n))
{
memset(G, 0, sizeof G); ans = 0;
memset(match, -1, sizeof match);
for(int i = 0; i < n; ++i)
{
scanf("%d: (%d)", &t, &k);
for(int j = 1; j <= k; ++j)
{
scanf("%d", &x);
G[i][x] = G[x][i] = 1;
}
}
for(int i = 0; i < n; ++i)
{
memset(vis, 0, sizeof vis);
if(dfs(i)) ++ans;
}
printf("%d\n", n-ans/2);
}
return 0;
}
继续加油~