POJ-1466 Girls and Boys(最大独立集)

题意:

在一群男女同学之间存在”浪漫关系”,且该关系只存在于男同学与女同学之间.现在给出你比如2号学生与4号学生有浪漫关系(但是没给出你到底2号是男同学还是4号是男同学).给出所有的关系,要你求出一个由学生构成的集合,满足该集合中任意两人都不存在”浪漫关系”。

思路:最大独立集。遇到这种求满足一定限制条件的所有集合中元素个数最大的问题,都可以尝试想最大独立集,且 需要分析一下是否能构成二分图,而且可以带着构建二分图的目的去想思路。

题目给的条件没有男女,所以可以将所有条件分解分成男和女两个集合,然后构建二分图,再进行求最大独立集即可。但是发现分解成两个集合不是很好操作,至少并查集就解决不了。查了一波,下面这张图解决的很好。

(图片来源)

所以,据上图思路,我们只需要对每个条件建立双向边,再进行求解最大匹配,最终进行n-ans/2即是答案。


代码:

#include <string.h>
#include <cstdio>
#define _c getchar()
using namespace std;
const int maxn = 505;
int G[maxn][maxn];
int match[maxn], vis[maxn];
int n;
int dfs(int cur)
{
	for(int i = 0; i < n; ++i)
	{
		if(!G[cur][i] || vis[i]) continue;
		vis[i] = 1;
		if(match[i] == -1 || dfs(match[i]))
		{
			match[i] = cur;
			return 1;
		}
	}
	return 0;
}
int main()
{
	int t, k, x, ans;
	while(~scanf("%d", &n))
	{
		memset(G, 0, sizeof G); ans = 0;
		memset(match, -1, sizeof match);
		for(int i = 0; i < n; ++i)
		{
			
			scanf("%d: (%d)", &t, &k);
			for(int j = 1; j <= k; ++j)
			{
				scanf("%d", &x);
				G[i][x] = G[x][i] = 1;
			}
		}
		for(int i = 0; i < n; ++i)
		{
			memset(vis, 0, sizeof vis);
			if(dfs(i)) ++ans;
		}
		printf("%d\n", n-ans/2);
	}
	return 0;
}

继续加油~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值