MATLAB专家揭秘AI在金融领域的应用

在目前大数据的网络时代下,MATLAB以及人工智能在金融行业有广泛的应用,它可以帮助金融行业从业者增强和优化流程;做出更准确的预测,并从经验中自主学习,从而进一步优化流程。在金融业领域的诸应用中凸显前沿化的优势。

2020年9月3日晚19:30,由经管之家开设的经管大学堂邀请到傅慈祥、陈建平和马文辉三位在金融服务领域和人工智能领域拥有卓越成就的MATLAB专家,对人工智能在金融科技领域的前沿应用进行在线揭秘。

 

(图片来源:经管之加官方微信账号)

经管大学堂本次邀请到的傅慈祥,毕业于德国慕尼黑大学(LMU),主修金融及货币经济学,他在德勤等金融服务机构有多年的咨询项目经验,与亚太地区的 MathWorks 各分公司合作,帮助金融服务行业客户了解金融方面的新功能,运用 MATLAB 來提升工作效能,并将客户的建议反馈。在本次直播中,他以公司债项评级为例,展示运用人工智能技术,在MATLAB中进行数据处理和模型的构建。

针对探索强化学习在金融交易中的应用,拥有多年大数据分析、机器学习建模与应用系统开发经验的马文辉博士根据自己多年来专注于MATLAB的数据处理与数据分析、机器学习和深度学习的成果,和在诺基亚中国研究院,Adobe中国研发中心和IBM从事大数据处理和机器学习方面的研究和工程开发工作的经验,用详细的案例向大家介绍了MATLAB的数据处理与数据分析的强化学习在金融交易中的实际应用。

在之后的后段,作为在预测性维护、大数据和高性能计算方向有 +10 年的工程经验的陈建平老师用金融市场中的实例对“如何进行无痛的模型生产部署”进行了回答。

“根据应用程序要求、原型构建或生产环境以及您当前所处的开发流程阶段,从几种部署方法之中选择一种方法”陈建平老师说到,这样的方式,除了提高仿真速度外,此方法还可以重用代码并保护知识产权。

工智能在金融科技领域的前沿应用的方向十分广泛,比如人工智能包括机器学习、深度学习、自然语言处理、图论算法、进化学习和其他技术等,当然如果将领域再进行细分,机器学习方法可分为无监督学习、监督学习或强化学习。尤其是强化学习通过反复模拟来优化流程,并为良好的结果提供奖励结构。它的目的是学习一种 '行为',而不是以尽可能高的精度来拟合一个模型。

经管之家联合三大MATLAB专家,在本次的线上直播中,对人工智能在金融科技领域的前沿应用进行详细的分析与解剖。在中国,金融服务业的数字化转型速度不断加快,在全球范围的发展势头不容小觑,云计算、区块链等金融企业新“技能”也随着数据分析技术与人工智能的发展而不断优化我们“智能金融”的全面建设已经不是梦境。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值