机器学习算法四之SVM支持向量机原理详解

支持向量机SVM(Support Vector Machine)

1.解决问题思路展开

*要解决的问题:什么样的决策边界才是最好的?
*特征数据本身如果就很难分,该怎么办?
*计算负责度怎么样?能否实际应用?

==>目标:基于上述问题对SVM进行推导

1.1决策边界


右图中的决策边界更具容忍度,更加可靠

1.2 通过距离获得决策边界(求取点到面的距离)

在这里插入图片描述
通过平面上两点可以得到平面的法向量,进而获得与法相量平行的单位方向向量,通过平面外一点X到平面上一点x’的距离D在单位方向向量的投影可以求出距离d,其中,D乘以单位向量为与图中dist重合的向量,取其模即为距离d,计算公式如下:
在这里插入图片描述

1.3 数据标签定义,SVM为一种有监督算法

在这里插入图片描述

1.4 目标函数推导

在这里插入图片描述
中间涉及缩放、极大值与极小值相互转换、对偶性(了解即可)
在这里插入图片描述

2.目标函数推导过程

2.1 拉格朗日乘子法求解

在这里插入图片描述
先求出​​​​​​​alpha,进而求出w和b
在这里插入图片描述
在这里插入图片描述

2.2 化简最终目标函数

在这里插入图片描述
在这里插入图片描述

2.3 举例求解决策方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. SVM特色

3.1 软间隔优化

边界上所有alpha不为零的点成为支持向量,非边界上的点的alpha值必为零,恒成立
在这里插入图片描述
有噪点加入时,引入软间隔~
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 核函数(低维->高维)

在这里插入图片描述
通过核函数将低维数据映射到高维空间
在这里插入图片描述
在这里插入图片描述
多数情况下大都用高斯核函数:将原始特征映射成高斯空间中的距离特征
在这里插入图片描述

先这样吧,代码后续更新呢

参考:
B站唐博士带你学AI:一小时快速理解SVM原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值