前言
本文介绍了MogaNet中的多阶门控聚合(MultiOrderGatedAggregation)模块在YOLOv11中的结合应用。MultiOrderGatedAggregation模块通过多阶深度卷积、门控操作和特征分解,能在不同交互尺度学习信息、动态选择特征、减少信息冗余。我们将该模块集成到YOLOv11的检测头部分,并在相关配置文件中进行设置。MogaNet在多个视觉基准测试中表现优异,将其MultiOrderGatedAggregation模块应用于YOLOv11,有望提升目标检测的性能,验证了方法的有效性和应用潜力。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
文章目录
介绍

摘要
在计算机视觉任务里,现代卷积网络借助尽可能全局地对内核进行语境化操作,展现出了极为可观的应用潜力。不过,深度神经网络(DNN)领域中多阶博弈论交互方面的最新研究进展,揭示了现代卷积网络存在表示瓶颈,具体表现为表达性交互未能通过增大内核尺寸而得到有效编码。为解决这一问题,我们提出了一个全新的现代卷积网络系列,名为 MogaNet,其用于在纯卷积网络模型中开展判别性视觉表示学习,具备良好的复杂度 - 性能权衡特性。MogaNet 将概念简洁却成效显著的卷积和门控聚合操作封装于一个紧凑模块内,能够高效地收集判别性特征并对其进行自适应语境化处理。相较于 ImageNet 以及包含 COCO 对象检测、ADE20K 语义分割、2D 和 3D 人体姿势估计与视频预测等多种下游视觉基准上的最先进的视觉Transformer(ViT)和卷积神经网络(ConvNet),MogaNet 呈现出卓越的可扩展性、令人惊叹的参数效率以及具备竞争力的性能。尤其值得关注的是,MogaNet 在 ImageNet - 1K 数据集上,以 5.2M 和 181M 个参数分别实现了 80.0% 和 87.8% 的准确率,性能优于 ParC - Net 和 ConvNeXt L,同时分别节省了 59% 的浮点运算次数(FLOP)和 17M 个参数。该网络的源代码可在 https://github.com/Westlake
订阅专栏 解锁全文
3103

被折叠的 条评论
为什么被折叠?



