YOLOv11改进 - C3k2融合 | C3k2融合iRMB倒置残差移动块,通过轻量注意力机制提升多尺度特征表示能力

部署运行你感兴趣的模型镜像

前言

本文介绍了倒置残差移动块(iRMB)在YOLOv11中的结合应用。iRMB是为移动端应用设计的高效模块,融合了CNN和Transformer架构的优点,具有简单高效、资源消耗低等创新点。它通过卷积多层感知器生成查询和键矩阵,用膨胀卷积生成值矩阵,经窗口级自注意力操作和深度可分离卷积提取特征,还可优化计算效率。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240312164623736

摘要

本论文致力于开发现代化、高效且轻量的密集预测模型,并在参数、浮点运算次数与性能之间寻求合理平衡。尽管倒置残差块(IRB)是轻量级卷积神经网络(CNN)的重要基石,但在基于注意力的研究中缺乏与之类似的构件。本研究从统一的视角入手,将高效的IRB与有效的Transformer组件相结合,重新审视轻量级基础架构。我们把基于CNN的IRB拓展到基于注意力的模型中,并提出一种单残差元移动块(MMB)用于轻量级模型设计。基于简单且有效的设计原则,我们推出了一种新型的倒置残差移动块(iRMB),并以此为基础构建了一个类似于ResNet的高效模型(EMO),该模型适用于下游任务。在ImageNet - 1K、COCO2017和ADE20K基准上开展的大量实验显示,我们的EMO在性能方面超越了当前最先进的方法,例如,EMO - 1M/2M/5M的Top - 1准确率分别达到了71.5、75.1和78.4,超越了同等级别的CNN - /基于注意力的模型,同时在参数、效率和准确度方面实现了良好的权衡:在iPhone14上的运行速度比EdgeNeXt快2.8 - 4.0倍。

创新点

iRMB (Inverted Residual Mobile Block) 的创新点在于其结合了CNN和Transformer架构的优点,为移动端应用设计了一个简

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

### C3k2iRMB融合或集成方法 在计算机视觉领域,网络结构的设计对于提升模型性能至关重要。为了实现C3k2iRMB的有效融合或集成,可以考虑从多个角度出发设计新的模块架构。 #### 设计混合卷积层 一种可能的方法是在网络中引入混合卷积层,在该层内同时应用C3k2iRMB的操作特性。具体来说,可以在同一位置上并行执行这两种操作,并通过逐元素相加的方式组合其输出特征图[^1]: ```python import torch.nn as nn class HybridConvLayer(nn.Module): def __init__(self, in_channels, out_channels): super(HybridConvLayer, self).__init__() # 定义C3k2组件 self.c3k2_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels//2, kernel_size=3, stride=1, padding=1) # 定义iRMB组件 self.irmb_block = InvertedResidualBottleneck( in_planes=in_channels, planes=out_channels//2, stride=1 ) def forward(self,x): c3k2_out = self.c3k2_conv(x) irmb_out = self.irmb_block(x) combined_output = torch.cat((c3k2_out,irmb_out),dim=1) return combined_output ``` #### 构建多分支残差连接 另一种策略是构建一个多分支框架,其中一条路径采用标准卷积(如C3k2),另一条则利用改进倒置残差瓶颈单元(iRMB),最后两条路径的结果会合并通过跳跃连接传递给下一层处理。 这种设计方案不仅能够充分利用各自的优势,而且有助于缓解梯度消失问题,促进更深层次网络的学习能力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值