前言
本文介绍了倒置残差移动块(iRMB)在YOLOv11中的结合应用。iRMB是为移动端应用设计的高效模块,融合了CNN和Transformer架构的优点,具有简单高效、资源消耗低等创新点。它通过卷积多层感知器生成查询和键矩阵,用膨胀卷积生成值矩阵,经窗口级自注意力操作和深度可分离卷积提取特征,还可优化计算效率。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
本论文致力于开发现代化、高效且轻量的密集预测模型,并在参数、浮点运算次数与性能之间寻求合理平衡。尽管倒置残差块(IRB)是轻量级卷积神经网络(CNN)的重要基石,但在基于注意力的研究中缺乏与之类似的构件。本研究从统一的视角入手,将高效的IRB与有效的Transformer组件相结合,重新审视轻量级基础架构。我们把基于CNN的IRB拓展到基于注意力的模型中,并提出一种单残差元移动块(MMB)用于轻量级模型设计。基于简单且有效的设计原则,我们推出了一种新型的倒置残差移动块(iRMB),并以此为基础构建了一个类似于ResNet的高效模型(EMO),该模型适用于下游任务。在ImageNet - 1K、COCO2017和ADE20K基准上开展的大量实验显示,我们的EMO在性能方面超越了当前最先进的方法,例如,EMO - 1M/2M/5M的Top - 1准确率分别达到了71.5、75.1和78.4,超越了同等级别的CNN - /基于注意力的模型,同时在参数、效率和准确度方面实现了良好的权衡:在iPhone14上的运行速度比EdgeNeXt快2.8 - 4.0倍。
创新点
iRMB (Inverted Residual Mobile Block) 的创新点在于其结合了CNN和Transformer架构的优点,为移动端应用设计了一个简
订阅专栏 解锁全文
369

被折叠的 条评论
为什么被折叠?



