最新开源视觉 SLAM 方案

方案分为以下 7 类

 

2. S-PTAM(双目 PTAM)

 

 

3. MonoSLAM

 

 

4. ORB-SLAM2

 

 

以下 5, 6, 7, 8 几项是 TUM 计算机视觉组全家桶,官方主页

5. DSO

 

 

6. LDSO

 

 

7. LSD-SLAM

 

 

8. DVO-SLAM

 

 

9. SVO

 

 

10. DSM

 

 

11. openvslam

 

 

12. se2lam(地面车辆位姿估计的视觉里程计)

 

 

13. GraphSfM(基于图的并行大尺度 SFM)

 

 

14. LCSD_SLAM(松耦合的半直接法单目 SLAM)

 

 

15. RESLAM(基于边的 SLAM)

 

 

16. scale_optimization(将单目 DSO 拓展到双目)

 

 

17. BAD-SLAM(直接法 RGB-D SLAM)

 

 

18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

 

 

19. ARM-VO(运行于 ARM 处理器上的单目 VO)

 

 

20. cvo-rgbd(直接法 RGB-D VO)

 

 

二、Semantic / Depp SLAM(12 项)

SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM 的某一个步骤(比如 VO,闭环等)。个人对后者没太关注,也同样欢迎大家在 issue 中分享。

21. MsakFusion

 

 

22. SemanticFusion

 

 

23. semantic_3d_mapping

 

 

24. Kimera(实时度量与语义定位建图开源库)

 

 

25. NeuroSLAM(脑启发式 SLAM)

 

 

26. gradSLAM(自动分区的稠密 SLAM)

 

 

27. ORB-SLAM2 + 目标检测/分割的方案语义建图

 

 

28. SIVO(语义辅助特征选择)

 

 

29. FILD(临近图增量式闭环检测)

 

 

30. object-detection-sptam(目标检测与双目 SLAM)

 

 

31. Map Slammer(单目深度估计 + SLAM)

 

 

32. NOLBO(变分模型的概率 SLAM)

 

 

三、Multi-Landmarks / Object SLAM(12 项)

其实多路标的点、线、平面 SLAM 和物体级 SLAM 完全可以分类在 Geometric SLAM 和 Semantic SLAM 中,但个人对这一方向比较感兴趣(也是我的研究生课题),所以将其独立出来,开源方案相对较少,但很有意思。

33. PL-SVO(点线 SVO)

 

 

34. stvo-pl(双目点线 VO)

 

 

35. PL-SLAM(点线 SLAM)

 

 

36. PL-VIO

 

 

37. lld-slam(用于 SLAM 的可学习型线段描述符)

 

 

点线结合的工作还有很多,国内的比如
+ 上交邹丹平老师的 Zou D, Wu Y, Pei L, et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Transactions on Robotics, 2019, 35(4): 999-1013.
+ 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visual SLAM with point and line features[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1775-1782.

38. PlaneSLAM

 

 

39. Eigen-Factors(特征因子平面对齐)

 

 

40. PlaneLoc

 

 

41. Pop-up SLAM

 

 

42. Object SLAM

 

 

43. voxblox-plusplus(物体级体素建图)

 

 

44. Cube SLAM

 

 

四、VIO / VISLAM(10 项)

在传感器融合方面只关注了视觉 + 惯导,其他传感器像 LiDAR,GPS 关注较少(SLAM 太复杂啦 -_-! )。视惯融合的新工作也相对较少,基本一些经典的方案就够用了。

45. msckf_vio

 

 

46. rovio

 

 

47. R-VIO

 

 

48. okvis

 

 

49. VIORB

 

 

50. VINS-mono

 

 

51. VINS-RGBD

 

 

52. Open-VINS

 

 

53. versavis(多功能的视惯传感器系统)

 

 

54. CPI(视惯融合的封闭式预积分)

 

 

五、Dynamic SLAM(5 项)

动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少,欢迎补充 issue

55. DynamicSemanticMapping(动态语义建图)

 

 

56. DS-SLAM(动态语义 SLAM)

 

 

57. Co-Fusion(实时分割与跟踪多物体)

 

 

58. DynamicFusion

 

 

59. ReFusion(动态场景利用残差三维重建)

 

 

六、Mapping(18 项)

针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建本身就是个很大的话题,开源代码也很多,以下方案收集地可能也不太全。

60. InfiniTAM(跨平台 CPU 实时重建)

 

 

61. BundleFusion

 

 

62. KinectFusion

 

 

63. ElasticFusion

 

 

64. Kintinuous

 

 

65. ElasticReconstruction

 

 

66. FlashFusion

 

 

67. RTAB-Map(激光视觉稠密重建)

 

 

68. RobustPCLReconstruction(户外稠密重建)

 

 

69. plane-opt-rgbd(室内平面重建)

 

 

70. DenseSurfelMapping(稠密表面重建)

 

 

71. surfelmeshing(网格重建)

 

 

72. DPPTAM(单目稠密重建)

 

 

73. VI-MEAN(单目视惯稠密重建)

 

 

74. REMODE(单目概率稠密重建)

 

 

75. DeepFactors(实时的概率单目稠密 SLAM)

 

 

76. probabilistic_mapping(单目概率稠密重建)

 

 

77. ORB-SLAM2 单目半稠密建图

 

 

七、Optimization(6 项)

个人感觉优化可能是 SLAM 中最难的一部分了吧 +_+ ,我们一般都是直接用现成的因子图、图优化方案,要创新可不容易,分享山川小哥的入坑指难

78. 后端优化库

 

 

79. ICE-BA

 

 

80. minisam(因子图最小二乘优化框架)

 

 

81. SA-SHAGO(几何基元图优化)

 

 

82. MH-iSAM2(SLAM 优化器)

 

 

83. MOLA(用于定位和建图的模块化优化框架)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值