目录
14. LCSD_SLAM(松耦合的半直接法单目 SLAM)
16. scale_optimization(将单目 DSO 拓展到双目)
18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)
19. ARM-VO(运行于 ARM 处理器上的单目 VO)
21. Map2DFusion(单目 SLAM 无人机图像拼接)
30. ORB-SLAM2 + 目标检测/分割的方案语义建图
33. object-detection-sptam(目标检测与双目 SLAM)
34. Map Slammer(单目深度估计 + SLAM)
36. GCNv2_SLAM (基于图卷积神经网络 SLAM)
三、Multi-Landmarks / Object SLAM(15 项)
44. lld-slam(用于 SLAM 的可学习型线段描述符)
53. Structure-SLAM-PointLine (室内环境单目点线 SLAM)
74. DynamicSemanticMapping(动态语义建图)
89. RobustPCLReconstruction(户外稠密重建)
91. DenseSurfelMapping(稠密表面重建)
96. DeepFactors(实时的概率单目稠密 SLAM)
97. probabilistic_mapping(单目概率稠密重建)
前言
SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,所谓完全的地图(a consistent map)是指不受障碍行进到房间可进入的每个角落。SLAM最早由Smith、Self和Cheeseman于1988年提出。由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键。
视觉 SLAM 算法可以实时构建世界的 3D 地图,并同时追踪摄像头(手持式或增强现实设备上的头戴式或安装在机器人上