目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】SLAM(基础篇)(五)

本文深入探讨了SLAM(Simultaneous Localization And Mapping)技术,特别是双目视觉惯性雷达SLAM。文章阐述了SLAM的基本概念、相关工作、系统构成,并详细分析了视觉前端、双目视觉惯性里程计、激光建图和闭环检测等关键模块。此外,还列举了多种开源视觉SLAM方案,涵盖了几何SLAM、语义SLAM、多地标/物体SLAM、传感器融合、动态SLAM、建图和优化等多个方面,展示了SLAM技术在实际应用中的多样性和复杂性。
摘要由CSDN通过智能技术生成

目录

前言

几个相关概念

双目视惯雷达SLAM

相关工作

系统综述

视觉前端

双目视觉惯性里程计

A. IMU预积分因子

C. 优化和边缘化

激光建图

A. LiDAR扫描去畸变

LiDAR增强的闭环

A. 回环检测

B. 回环约束

C. 全局位姿图优化

D. 重定位

应用场景

开源视觉 SLAM 方案

一、Geometric SLAM(23 项)

1. PTAM

2. S-PTAM(双目 PTAM)

3. MonoSLAM

4. ORB-SLAM2

5. DSO

6. LDSO

7. LSD-SLAM

8. DVO-SLAM

9. SVO

10. DSM

11. openvslam

12. se2lam(地面车辆位姿估计的视觉里程计)

13. GraphSfM(基于图的并行大规模 SFM)

14. LCSD_SLAM(松耦合的半直接法单目 SLAM)

15. RESLAM(基于边的 SLAM)

16. scale_optimization(将单目 DSO 拓展到双目)

17. BAD-SLAM(直接法 RGB-D SLAM)

18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

19. ARM-VO(运行于 ARM 处理器上的单目 VO)

20. cvo-rgbd(直接法 RGB-D VO)

21. Map2DFusion(单目 SLAM 无人机图像拼接)

22. CCM-SLAM(多机器人协同单目 SLAM)

23. ORB-SLAM3

二、Semantic / Depp SLAM(16 项)

24. MsakFusion

25. SemanticFusion

26. semantic_3d_mapping

27. Kimera(实时度量与语义定位建图开源库)

28. NeuroSLAM(脑启发式 SLAM)

29. gradSLAM(自动分区的稠密 SLAM)

30. ORB-SLAM2 + 目标检测/分割的方案语义建图

31. SIVO(语义辅助特征选择)

32. FILD(临近图增量式闭环检测)

33. object-detection-sptam(目标检测与双目 SLAM)

34. Map Slammer(单目深度估计 + SLAM)

35. NOLBO(变分模型的概率 SLAM)

36. GCNv2_SLAM (基于图卷积神经网络 SLAM)

37. semantic_suma(激光语义建图)

38. Neural-SLAM(主动神经 SLAM)

39. TartanVO:一种通用的基于学习的 VO

三、Multi-Landmarks / Object SLAM(15 项)

40. PL-SVO(点线 SVO)

41. stvo-pl(双目点线 VO)

42. PL-SLAM(点线 SLAM)

43. PL-VIO

44. lld-slam(用于 SLAM 的可学习型线段描述符)

45. PlaneSLAM

46. Eigen-Factors(特征因子平面对齐)

47. PlaneLoc

48. Pop-up SLAM

49. Object SLAM

50. voxblox-plusplus(物体级体素建图)

51. Cube SLAM

52. VPS-SLAM(平面语义 SLAM)

53. Structure-SLAM-PointLine (室内环境单目点线 SLAM)

54. PL-VINS

四、Sensor Fusion(19 项)

55. msckf_vio

56. rovio

57. R-VIO

58. okvis

59. VIORB

60. VINS-mono

61. VINS-RGBD

62. Open-VINS

63. versavis(多功能的视惯传感器系统)

64. CPI(视惯融合的封闭式预积分)

65. TUM Basalt

66. Limo:激光单目视觉里程计

67. LARVIO(多状态约束卡尔曼滤波的单目 VIO)

68. vig-init(垂直边缘加速视惯初始化)

69. vilib(VIO 前端库)

70. Kimera-VIO

71. maplab(视惯建图框架)

72. lili-om:固态雷达惯性里程计与建图

73. CamVox:Lidar辅助视觉 SLAM

五、Dynamic SLAM(8 项)

74. DynamicSemanticMapping(动态语义建图)

75. DS-SLAM(动态语义 SLAM)

76. Co-Fusion(实时分割与跟踪多物体)

77. DynamicFusion

78. ReFusion(动态场景利用残差三维重建)

79. DynSLAM(室外大规模稠密重建)

80. VDO-SLAM(动态物体感知的 SLAM)

六、Mapping(21 项)

81. InfiniTAM(跨平台 CPU 实时重建)

82. BundleFusion

83. KinectFusion

84. ElasticFusion

85. Kintinuous

86. ElasticReconstruction

87. FlashFusion

88. RTAB-Map(激光视觉稠密重建)

89. RobustPCLReconstruction(户外稠密重建)

90. plane-opt-rgbd(室内平面重建)

91. DenseSurfelMapping(稠密表面重建)

92. surfelmeshing(网格重建)

93. DPPTAM(单目稠密重建)

94. VI-MEAN(单目视惯稠密重建)

95. REMODE(单目概率稠密重建)

96. DeepFactors(实时的概率单目稠密 SLAM)

97. probabilistic_mapping(单目概率稠密重建)

98. ORB-SLAM2 单目半稠密建图

99. Voxgraph(SDF 体素建图)

100. SegMap(三维分割建图)

101. OpenREALM:无人机实时建图框架

七、Optimization(6 项)

102. 后端优化库

103. ICE-BA

104. minisam(因子图最小二乘优化框架)

105. SA-SHAGO(几何基元图优化)

106. MH-iSAM2(SLAM 优化器)

107. MOLA(用于定位和建图的模块化优化框架)


 

前言

SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,所谓完全的地图(a consistent map)是指不受障碍行进到房间可进入的每个角落。SLAM最早由Smith、Self和Cheeseman于1988年提出。由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键。

视觉 SLAM 算法可以实时构建世界的 3D 地图,并同时追踪摄像头(手持式或增强现实设备上的头戴式或安装在机器人上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值