Java没有自带的求一个集合的所有子集的方法,我们可以通过集合的子集规律来求。
一个集合的所有子集等于2^该集合的长度。比如{c,b,a}的长度为3,这个集合的子集就有8个。
这句话看起来很简单,但同时也隐含着高深的哲理。其实一个集合的所有集合,和2^该集合的长度这个数字有关。比如上面的例子,{c,b,a}的长度为3,则可以用0-7表示其所有子集。如下所示,改数字所对应的位置为1,则说明我需要这个数字形成子集。从0-7的二进制表示,刚好代表完,一个长度为3,子集个数为8的所有子集。
0(000):{}
1(001):{a}
2(010):{b}
3(011):{ab}
4(100):{c}
5(101):{a,c}
6(110):{b,c}
7(111):{a,b,c}
于是,根据上面的规律,代码可以这样写,先取集合长度,求出2^该集合的长度是多少,比如上面的8,然后从0遍历到8-1。遍历的时候,对0、1、2……每一个数据进行位运算,逐一判断其对应的位数,也就是二进制表示方式,那一位是1。用汇编那种,将每一位移到最末尾,与1的位与实现,具体代码如下:
import java.util.ArrayList;
public class getSubSet {
public static ArrayList<ArrayList<Integer>> getSubset(ArrayList<Integer> L) {
if (L.size() > 0) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
for (int i = 0; i < Math.pow(2, L.size()); i++) {// 集合子集个数=2的该集合长度的乘方
ArrayList<Integer> subSet = new ArrayList<Integer>();
int index = i;// 索引从0一直到2的集合长度的乘方-1
for (int j = 0; j < L.size(); j++) {
// 通过逐一位移,判断索引那一位是1,如果是,再添加此项
if ((index & 1) == 1) {// 位与运算,判断最后一位是否为1
subSet.add(L.get(j));
}
index >>= 1;// 索引右移一位
}
result.add(subSet); // 把子集存储起来
}
return result;
} else {
return null;
}
}
public static void main(String[] args) {
ArrayList<Integer> L = new ArrayList<Integer>();
L.add(1);
L.add(2);
L.add(3);
System.out.println(getSubset(L));
}
}
运行结果如下: