高数笔记-第一章 函数与极限-3

第三节 函数的极限

函数极限的定义

1 . 自变量趋于有限值时函数的极限

定义 1 设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义. 如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当 x x x满足不等式 0 < ∣ x − x 0 ∣ < δ 0<|x - x_0|<\delta 0<xx0<δ 时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ < ε |f(x) -A| < \varepsilon f(x)A<ε,那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0时的极限,记作 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A f ( x ) → A f(x) \to A f(x)A(当 x → x 0 x \to x_0 xx0).

左极限
lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A 的定义中,把 0 < ∣ x − x 0 ∣ < δ 0<|x - x_0|<\delta 0<xx0<δ 改为 x 0 − δ < x < x 0 x_0 -\delta < x < x_0 x0δ<x<x0,那么 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0时的左极限,记作
lim ⁡ x → x 0 − f ( x ) = A 或 f ( x 0 − ) = A . \lim\limits_{x \to x_0^-}{f(x)} = A\quad或\quad f(x_0^-) = A. xx0limf(x)=Af(x0)=A.

右极限
lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A 的定义中,把 0 < ∣ x − x 0 ∣ < δ 0<|x - x_0|<\delta 0<xx0<δ 改为 x 0 < x < x 0 + δ x_0< x < x_0 + \delta x0<x<x0+δ,那么 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0时的左极限,记作
lim ⁡ x → x 0 + f ( x ) = A 或 f ( x 0 + ) = A . \lim\limits_{x \to x_0^+}{f(x)} = A\quad或\quad f(x_0^+) = A. xx0+limf(x)=Af(x0+)=A.

左极限和右极限统称为单侧极限.


2 . 自变量趋于无穷大时函数的极限

定义 2 设函数 f ( x ) f(x) f(x) ∣ x ∣ |x| x大于某一正数时有定义.如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε (不论它多么小),总存在正数 X X X,使得当 x x x 满足不等式 ∣ x ∣ > X |x| > X x>X 时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon f(x)A<ε
那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → ∞ x \to \infty x 时的极限,记作
lim ⁡ x → ∞ f ( x ) = A 或 f ( x ) → A ( 当 x → ∞ ) . \lim\limits_{x \to \infty}{f(x)} = A \quad或\quad f(x) \to A (当x \to \infty). xlimf(x)=Af(x)Ax.


函数极限的性质

定理 1(函数极限的唯一性) 如果 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}{f(x)} xx0limf(x)存在,那么这极限唯一.

定理 2 (函数极限的局部有界性) 如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A,那么存在常数 M > 0 M > 0 M>0 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M.

定理 3 (函数极限的局部保号性) 如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A,且 A > 0 A > 0 A>0 或( A < 0 A < 0 A<0),那么存在常数 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x - x_0| < \delta 0<xx0<δ 时,有 f ( x ) > 0 f(x) > 0 f(x)>0 (或 f ( x ) < 0 f(x) < 0 f(x)<0).

定理 3’ 如果 lim ⁡ x → x 0 f ( x ) = A ( A ≠ 0 ) \lim\limits_{x \to x_0}{f(x)} = A(A \neq 0) xx0limf(x)=AA=0, 那么就存在着 x 0 x_0 x0的某一去心邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0),当 x ∈ U ˚ ( x 0 ) x \in \mathring{U}(x_0) xU˚(x0)时,就有 ∣ f ( x ) ∣ > ∣ A ∣ 2 |f(x)| > \dfrac{|A|}{2} f(x)>2A.

推论 如果在 x 0 x_0 x0的某去心邻域内 f ( x ) ≥ 0 f(x) \geq 0 f(x)0 (或 f ( x ) ≤ 0 f(x) \leq 0 f(x)0),而且 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A xx0limf(x)=A,那么 A ≥ 0 A \geq 0 A0 (或 A ≤ 0 A \leq 0 A0).

定理 4(函数极限与数列极限的关系) 如果极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}{f(x)} xx0limf(x)存在,{ x n x_n xn}为函数 f ( x ) f(x) f(x) 的定义域内任一收敛于 x 0 x_0 x0的数列,且满足: x n ≠ x 0 ( n ∈ N + ) x_n \neq x_0(n \in N_+) xn=x0nN+,那么相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}必收敛,且 lim ⁡ n → ∞ f ( x n ) = lim ⁡ x → x 0 f ( x ) \lim\limits_{n \to \infty}{f(x_n) } = \lim\limits_{x \to x_0}{f(x)} nlimf(xn)=xx0limf(x).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值