高数笔记-第一章 函数与极限-7

第七节 无穷小的比较

定义
(1)如果 lim ⁡ β α = 0 \lim\limits{\dfrac {\beta}{\alpha}} = 0 limαβ=0,那么就说 β \beta β 是比 α \alpha α 高阶的无穷小,记作 β = o ( α ) \beta = o(\alpha) β=o(α)

(2)如果 lim ⁡ β α = ∞ \lim \dfrac{\beta}{\alpha} = \infty limαβ=,那么就说 β \beta β 是比 α \alpha α 低阶的无穷小;

(3)如果 lim ⁡ β α = c ≠ 0 \lim \dfrac{\beta}{\alpha} = c \neq 0 limαβ=c=0,那么就说 β \beta β α \alpha α 是同阶无穷小;

(4)如果 lim ⁡ β α k = c ≠ 0 \lim \dfrac{\beta}{\alpha ^k} = c \neq 0 limαkβ=c=0,那么就说 β \beta β 是关于 α \alpha α k k k 阶无穷小;

(5)如果 lim ⁡ β α = 1 \lim \dfrac{\beta}{\alpha} = 1 limαβ=1,那么就说 β \beta β α \alpha α 是等价无穷小,记作 α ∼ β \alpha \sim \beta αβ.

定理 1 β \quad\beta β α \alpha α 是等价无穷小的充分必要条件是
β = α + o ( α ) . \beta = \alpha + o(\alpha). β=α+o(α).

定理 2 α ∼ α ~ , β ∼ β ~ , \quad \alpha \sim \tilde{\alpha},\beta \sim \tilde{\beta}, αα~ββ~ lim ⁡ β ~ α ~ \lim\dfrac {\tilde{\beta}}{\tilde{\alpha}} limα~β~ 存在,则
lim ⁡ β α = lim ⁡ β ~ α ~ . \lim \dfrac{\beta}{\alpha} = \lim \dfrac{\tilde{\beta}}{\tilde{\alpha}}. limαβ=limα~β~.

例子

(1)求 lim ⁡ x → 0 tan ⁡ 2 x sin ⁡ 5 x \quad\lim\limits_{x \to 0}{\dfrac{\tan2x}{\sin5x}} x0limsin5xtan2x.

(2)求 lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 cos ⁡ x − 1 . \quad\lim\limits_{x \to 0}{\dfrac{(1+x^2)^{\frac{1}{3}} - 1}{\cos x - 1}}. x0limcosx1(1+x2)311.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值