25年1月来自芝加哥大学和 2ndsight.ai 的论文“Agentic Systems: A Guide to Transforming Industries with Vertical AI Agents”。
智体系统的发展代表人工智能和现代软件系统的一个重要里程碑,其驱动力是针对不同行业量身定制的垂直智能需求。这些系统通过适应性、学习和与动态环境的交互来提高业务成果。这场革命的最前沿是大语言模型 (LLM) 智体,它们是这些智能系统的认知骨干。
为了满足一致性和可扩展性的需求,这项工作试图通过识别核心构建块并提出一个认知技能模块来定义垂直 AI 智体设计模式的标准化级别,该模块结合特定领域的专用推理能力。基于这些基础概念,本文全面介绍智体系统,详细介绍它们的核心组件、操作模式和实施策略。它进一步探讨各个行业的实际用例和示例,强调 LLM 智体在推动特定行业应用方面的变革潜力。
技术的快速发展改变业务运营,SaaS 平台 [2] 已成为跨行业可扩展性和效率的关键。然而,随着行业面临日益动态和复杂的环境,传统的 SaaS 解决方案往往无法满足特定领域和不断变化的需求。
为了弥补这一差距,智体系统应运而生,成为新一代解决方案。它们由 LLM 和先进的 AI 功能提供支持,提供智能、上下文-驱动和特定领域的解决方案,解决传统 SaaS 平台和上下文-觉察系统的局限性。
传统 SaaS 平台的缺点
传统 SaaS 平台是业务运营的支柱,提供可靠的工具来管理工作流和维护运营一致性。其架构强调水平可扩展性和普遍适用性,使企业能够标准化流程并优化跨行业的日常任务。这种广泛的适用性使 SaaS 成为管理重复性任务和跨不同部门扩展运营的理想选择。然而,这种通用设计往往以牺牲特定领域的智能和灵活性为代价,而这些对于应对动态和复杂环境的独特挑战至关重要。
这些限制在各个行业都很明显:
• 电子商务:平台可以有效地处理在线交易、产品目录管理和订单跟踪。然而,它们通常需要大量定制来分析客户购买行为、预测季节性需求趋势或根据实时销售数据动态调整库存水平。
• 多渠道营销:工具简化跨各种渠道的营销活动管理,为电子邮件、社交媒体和广告提供模板和自动化。然而,它们对预定义工作流程的依赖限制它们快速适应不断变化的客户偏好、新兴趋势或竞争对手策略的能力。
• 库存管理:系统跟踪库存水平并根据预定义的阈值触发重新订购。尽管如此,它们通常缺乏预测供应链中断、应对突然的需求激增或利用外部市场洞察优化采购策略的能力。
这些示例强调传统 SaaS 平台对基于规则的自动化和结构化数据输入的依赖。虽然它们对于可预测和常规流程有效,但它们在解决需要上下文智能和适应性的特定领域任务方面却存在不足。
向上下文-觉察系统的过渡
传统 SaaS 平台的局限性推动上下文-觉察系统的采用,该系统旨在通过将实时数据和适应性集成到工作流中来解决这些差距。通过动态调整以适应不断变化的场景,这些系统使企业能够在日益复杂的环境中更有效地运营。上下文-觉察系统旨在:
• 了解动态环境:整合实时数据来调整工作流和输出。
• 将数据转化为决策:无需大量人工干预即可将原始数据转化为可操作的见解。
• 适应不断变化的场景:适应不可预见的情况或新兴趋势。
虽然这些系统代表向前迈出的重要一步,但它们仍然面临挑战。例如:
• 供应链管理:传统工具跟踪库存,但无法预测天气事件或地缘政治风险等外部因素造成的中断。
• 医疗保健:调度系统可以管理预约,但缺乏根据实时健康数据对危重患者进行优先排序的能力。
这些示例突出上下文-觉察系统在实现全面决策方面的局限性。虽然它们具有适应性,但它们受到对预定义规则的依赖的限制,并且缺乏处理非结构化数据或做出高级上下文决策的能力。
随着各行各业面临越来越复杂和特定领域的挑战,传统和上下文-觉察系统的局限性已变得显而易见。垂直人工智能智体已成为一种变革性解决方案,将行业特定专业知识和精细调整的智能嵌入到适应性强的实时系统中。通过将上下文-觉察系统的灵活性与域知识相结合,它们使组织能够精准高效地应对独特挑战。
这些智体弥合通用系统与现代行业特定需求之间的差距,实现实时适应性和专业化问题解决。这一演变标志着智能系统设计的关键转变,使企业能够优化工作流程、增强决策能力并以前所未有的效率应对日益动态的运营需求。
垂直 AI 智体的运营优势
目标领域专业知识
垂直 AI 智体针对特定行业量身定制,利用针对专业知识和工作流程进行微调的域特定推理引擎 (LLM) 来有效应对复杂挑战。这确保它们能够:
• 以卓越的精度执行复杂的任务,例如法律合同分析、医学影像解释或财务风险评估。
• 生成针对领域独特需求的见解和建议,减少错误和人工工作。
• 通过将领域特定协议和指南直接纳入决策流程,确保运营准确性并符合行业标准,最大限度地减少关键任务中的风险和错误。
这些专业能力使垂直 AI 智体在准确性、可靠性和法规遵守至关重要的领域中不可或缺。
实时运营中的动态适应性
与传统系统不同,垂直 AI 智体在动态环境中表现出色,不断适应不断变化的条件和运营需求。他们通过以下方式实现这一目标:
• 实时数据处理:利用库存波动、客户偏好或环境因素等实时输入,即时调整策略和输出。
• 主动决策:预测中断并重新配置工作流程,例如在延误期间重新安排供应链或在紧急情况下重新分配资源。
• 可扩展响应能力:灵活管理小调整和大规模转变,确保最短停机时间和最大效率。
这种适应性使组织能够有效应对不断变化的挑战,使垂直 AI 智体成为弹性和响应性运营的核心。
端到端工作流自动化
通过自动化复杂流程,垂直 AI 智体将原始数据转换为可操作的结果,简化传统上依赖人工干预的工作流程。这导致:
• 更快的周转时间:在几秒钟内分析、决定和执行任务,显着减少客户入职或合规性审查等流程的延迟。
• 成本优化:自动执行重复性任务可使人力资源专注于战略性、高价值活动,从而提高生产力并降低运营费用。
• 跨系统互操作性:与企业工具无缝集成并弥合结构化(例如 ERP 系统)和非结构化(例如电子邮件、文档)数据环境之间的差距。
垂直 AI 智体解决方案正在迅速发展,谷歌、AWS、OpenAI 和微软等主要参与者带头努力开发简化和扩展垂直 AI 解决方案创建的平台。虽然这些进步标志着变革性的转变,但仍处于这一旅程的早期阶段,运营模式才刚刚开始成形。这些新兴平台旨在为微调、部署和集成提供标准化框架,从而实现更结构化的方法来构建智能自适应智体。
LLM 智体定义
LLM 智体是由大语言模型 (LLM) 驱动的自主智能系统,它集成模块化组件(推理、记忆、认知技能和工具),以解决动态和不断发展的环境中的复杂任务。这些智体旨在独立运行、适应变化并通过将特定领域的专业知识与上下文理解相结合来执行复杂的任务。智体架构中的每个模块都有不同的用途:推理支持逻辑决策,记忆支持关键信息的保留和回忆,工具促进与外部系统和环境的交互。如图说明 LLM 智体的模块化架构和组件,突出显示其以适应性、智能性和精确性执行动态实时流程的能力。
在 LLM 智体的核心构建块中引入一个新模块——认知技能,它填补预训练或微调的 LLM 智体、用于与环境交互的外部工具和新推理模型之间的空白。该模块确保 LLM 智体配备专门针对特定任务而构建的模型,从而增强其在各个领域和挑战中有效运作的能力。
LLM 智体与 LLM 工作流
区分 LLM 智体与 LLM 工作流非常重要,因为它们在概念和操作上都不同。LLM 工作流是预定义的静态流程,旨在执行特定的线性任务。它们基于结构化管道运行,其中每个步骤都明确定义并按顺序执行,几乎没有灵活性或适应性。
例如,如图所示,典型的工作流涉及使用多个 LLM 的提示链,并结合检索增强生成 (RAG) 模式来访问特定领域的知识。在此设置中,一个 LLM 可能会处理查询以确定意图或优化上下文,而另一个配备检索知识的 LLM 会生成最终响应。工作流对固定步骤的依赖确保一致性,但限制灵活性。有关 RAG 实施和高级提示指南的更多详细信息,请参阅 [7] 和 [6]。
LLM 智体之所以与众不同,是因为它们能够根据不断变化的环境和复杂的目标推理、调整和优化其行为,这使得它们非常适合高级动态应用。与传统的 LLM 工作流程相比,这一区别凸显 LLM 智体的多功能性和智能性。
LLM 智体的核心模块
记忆:连续性和上下文的核心
记忆模块支持智体在交互过程中保持上下文的能力,确保个性化和一致的响应。它存储历史交互、用户偏好和领域特定知识,作为智体的长期存储系统。通过利用记忆,智体可以实现:
• 上下文意识:利用先前的交互来保持连续性。
• 个性化:根据用户特定信息调整响应。
• 域专业知识:利用存储的知识提供精确且明智的输出。
此模块确保智体无缝运行,将过去的交互与实时数据集成以提供适合上下文的结果。
推理引擎 (LLM):智体的大脑
由 LLM 驱动的推理引擎模块是 LLM 智体的决策核心。它协调逻辑推理、规划、情境理解和个性化交互,将原始数据转化为可操作的见解。通过整合来自记忆、认知技能和工具的输入,推理引擎可确保智体在动态和复杂的环境中有效运行。该模块是智体的智能核心,推动每次交互的一致性和适应性。
推理引擎的核心功能
- 逻辑推理和问题解决:推理引擎评估输入以得出有意义的结论。通过分析模糊或复杂的场景,它应用高级逻辑推理来确保智体的响应准确且由数据驱动。
- 上下文理解和响应生成:推理引擎利用来自记忆的历史数据和来自工具的实时输入,根据上下文定制输出,确保连贯、自适应和一致的交互。这种上下文理解使智体能够准确处理多样化和不断变化的场景。
- 任务排序、面向目标的规划和思路推理:推理引擎战略性地组织和排序任务,确保以目标为导向的行为。一个关键的增强功能是其思路推理,它允许智体将复杂的查询分解为更小的顺序步骤。此过程确保清晰度、逻辑流程和准确的解决方案,尤其是对于多方面任务。
- 定制交互的自适应角色:推理引擎集成角色,根据观众调整智体的语气、风格和推理方法。角色通过将交互与期望相结合来增强用户信任和参与度:
富有同理心的角色:适用于医疗保健或客户支持,提供富有同情心和理解力的交互。
专业角色:适用于商业或法律应用,确保正式和准确的响应。
休闲角色:适用于面向消费者的角色,促进友好和平易近人的沟通。
认知技能:特定任务推理
认知技能模块充当模型中心,为智体配备专门设计用于完成任务的专用模型,而通用 LLM 甚至经过微调的 LLM 都难以有效执行这些任务。微调模型通常缺乏复杂、特定领域任务所需的精度和专业化。认知技能模块通过提供专门为专业应用量身定制的领域特定认知能力来弥补这一差距,增强智体的功能和适应性。通过利用这些专业技能,智体可以处理需要高精度、领域专业知识或高级处理能力的任务。
认知技能实际应用示例:
• 风险评估模型:为筛选和评估构建的:
– 知识产权内容是否存在潜在侵权或冲突。
– 个人信息和隐私敏感数据,以确保遵守 GDPR 等法规。
– 风险高发的业务,例如金融服务中的信用承保。
• 漏洞检测模型:通过以下方式开发,旨在防范对抗性攻击和漏洞:
– 识别和减轻越狱尝试、有毒内容生成或数据中毒攻击等风险。
– 增强智体在对抗环境中的恢复能力,确保可靠的性能。
• 合规性监控模型:对于确保遵守以下规定至关重要:
– 通过检测偏离道德或操作准则的输出来遵守组织政策。
– 法律框架,例如根据行业特定法规验证合同或输出。
• 光学字符识别 (OCR):使智体能够处理和提取以下信息:
– 扫描的文档、发票或收据。
– 包含文本的手写表格或图像。
– 需要结构化数据提取的复杂文档。
• 图像分类和目标检测:提供视觉处理功能,例如:
– 识别制造过程中的缺陷部件。
– 对医学图像进行分类以进行诊断(例如,在 X 射线中检测肿瘤)。
– 分析卫星图像以进行环境监测。
• 音频和语音处理模型:添加专门的功能来处理:
– 呼叫中心录音的转录和情感分析。
– 多语言通信中的实时语言翻译。
• 负责任的 AI - 护栏分类器:对于确保智体操作合乎道德和安全至关重要,包括:
– 毒性检测:筛选输出中的攻击性或有害语言。
– 偏见缓解:识别和减少生成的响应中的偏见。
– 道德审查:验证输出是否符合社会和组织道德标准。
– 错误信息检测:标记和纠正潜在的虚假或误导性信息。
这些认知技能使智体能够作为一个多功能、目标驱动的系统发挥作用,通过利用专门的能力来适应其运营环境。通过充当 LLM 的一般推理能力和特定领域推理任务之间的桥梁,该模块确保智体不仅适应性强,而且精确、可靠且符合行业特定需求。
工具:连接知识和交互
工具模块为智体配备一系列工具,可增强其上下文和环境感知能力。这些工具使智体能够访问、检索和处理来自各种来源的信息,确保其行动是知情的、自适应的并与运营目标保持一致。智体可以利用的工具示例包括:
• 知识检索系统:检索增强生成 (RAG) 系统用于访问结构化(例如数据库)和非结构化(例如文档存储库)知识,使智体能够将相关的特定领域信息纳入其运营中。
• 动态 API 集成:允许智体与实时数据流、专有平台和外部系统交互的工具,促进实时决策和自适应响应。
• 遗留系统接口:用于连接传统结构化数据系统(例如关系数据库)的工具,以将历史数据和见解纳入智体的当前任务中。
• 上下文-觉察工具:为智体提供情境和环境背景的系统,使其能够根据特定的操作场景定制其操作和输出。
智体系统的定义
智体系统是一种高级框架,它集成了一个或多个 LLM 智体,以自动执行复杂任务并简化各个领域的流程。这些系统旨在自主运行,使智体能够通过直接通信或协调其交互的编排模块进行协作。通过利用模块化设计,智体系统提供灵活性、适应性和可扩展性,以满足动态和不断发展的运营需求。
架构灵活性和设计模式
智体系统缺乏一个普遍接受的设计模式。它们的架构和实现差异很大,通常针对特定领域和用例进行量身定制。这种灵活性使组织能够设计最符合其独特要求的智体系统,尽管这也带来建立标准化和互操作性的挑战。
尽管缺乏标准化的设计模式,但技术领导者、LLM 解决方案提供商和学术研究人员在推进智体框架方面取得实质性进展。这些努力侧重于开发通用框架,同时也构建针对特定领域应用的多智体系统。
在智体框架方面行业的努力
• 微软:引入 AutoGen 等框架,支持多智体系统实现任务自动化和协作,以及 Semantic Kernel,将 AI 集成到企业工作流中,重点关注安全性和可扩展性 [8]。
• OpenAI:引入 Assistants API,支持开发具有高级功能的 AI 智体,例如工具利用率、基于内存的持久对话和知识检索,以处理复杂任务和动态交互 [9]。
• 谷歌:开发 Vertex AI Agent Builder,它集成 Vertex AI Search 以实现扎实的响应和 Vertex AI Conversation 以实现自然对话,从而简化智体的开发,以完成客户支持和数据分析等任务 [3]。
• 亚马逊网络服务 (AWS):提供一套强大的工具,专门用于跨行业部署智体系统,使开发人员能够解决特定的用例 [10]。
• Anthropic:专注于利用其核心 LLM Claude 为各种应用创建多样化的智体系统模式 [1]。
• LangChain:支持实现智体执行动态、多步骤任务,但在管理多个智体和工具之间的复杂交互时面临速度限制的挑战 [4]。
学术研究工作
• Magentic-One:提出一种用于解决复杂问题的通用多智体系统架构,旨在实现跨领域的适应性 [5]。
• KG4Diagnosis:开发一个层次化的多智体框架,并通过知识图谱增强,以提高医疗诊断的准确性,特别是在医疗保健领域 [14]。
• MedAide:探索使用专门的 LLM 创建协作医疗助理系统,以提供全面的患者支持服务 [12]。
这些行业创新和学术进步共同推动智体系统的快速发展,为更多功能和影响力更大的 AI 解决方案铺平道路。
智体系统类别
智体系统可根据其结构、范围和交互动态分为三种主要类型:
- 任务特定的智体
- 多智体系统
- 人工增强的智体
每个类别都反映设计智能系统的独特方法,旨在满足不同的操作需求和复杂性。
任务特定智体
定义:任务特定智体是一种自主系统,旨在处理特定功能或解决特定领域内狭义问题。这些智体充当专门的模块,通过有效管理离散任务为更大的系统做出贡献。
根据应用需求,有多种模式可以实现任务特定智体。例如:
• ReAct 智体:结合推理和行动来处理交互式工作流和决策任务 [13]。
• 路由器智体:将查询或任务映射到适当的子智体或数据源,通常用于多域检索系统,如检索增强生成 (RAG) [11]。
RAG 智体路由器:是一种任务特定智体,旨在动态协调检索增强生成系统中的知识检索。其主要功能是分析用户查询并将其映射到适当的域特定知识源、工具或 API,确保高效且上下文准确的响应。
如图说明 RAG 智体路由器的架构。当用户提交查询时,该查询将由 LLM 智体(路由器)处理,该智体根据查询的意图确定适当的路由。路由器将查询映射到两个不同的向量数据库之一,每个数据库代表一个特定的知识领域(例如,法律知识或财务数据)。这些向量数据库由特定域的编码器提供支持,经过微调以理解各自领域的语义和关键方面。检索的相关上下文信息与提示模板相结合并发送到 LLM,后者生成总结的、上下文准确的响应。然后将响应返回给用户,确保针对查询的相关性和准确性。
这种模式在以下场景中特别有价值:
• 域特定知识源:多个向量数据库针对特定领域(例如法律、金融)进行定制,并依靠经过微调的编码器来理解各自领域的语义和细微差别。
• 索引分离:由于可扩展性、性能优化或安全要求等限制,将知识源组合成单个索引是不切实际的。
• 动态查询处理:当用户查询的意图和上下文不同时,需要路由器应用专门的检索策略来提供准确的域特定信息。
• 利用不同的工具或 API:当查询需要使用特定的外部工具(例如计算器、数据分析 API 或 CRM 集成)来补充可操作见解或自动化工作流程的检索时。
路由器智体的实际用例
- 客户支持系统
场景:客户提交跨不同域的多个查询,例如跟踪货运、处理退货和请求退款。
解决方案:路由器智体解析每个查询的意图,将其映射到各自特定域知识或 API(例如,跟踪数据库、退货系统、付款数据库、客户关系管理 (CRM) 工具、库存管理系统或实时聊天平台),检索必要的数据,并将信息汇总为对客户的统一响应。 - 企业知识管理
场景:员工需要访问存储在多个部门数据库中的文档,例如人力资源政策、法律先例和财务报告。
解决方案:路由器智体识别员工查询的域并将其路由到适当的数据库。它检索相关文档或数据并高效呈现,确保快速准确地访问信息。 - 医疗决策支持
场景:医生查询多个系统以访问特定医疗状况的患者病史、实验室结果和临床指南。
解决方案:路由器智体处理查询并将其映射到相应的系统(例如,电子健康记录、诊断数据库和治疗指南)。它检索相关信息并将其集成到医生的单一综合报告ē检索中的 RAG 智体路由器
i)场景:具有用于法律、财务和技术知识的独立向量数据库系统需要处理用户查询,例如:“总结技术领域的最新知识产权法先例。”
ii)解决方案:
(a) 路由器智体将域标识为“法律”。
(b) 它将查询映射到“法律先例数据库”。
© 它检索相关案例的摘要并将其传递给 LLM,后者生成针对查询的简洁且领域准确响应。
多智体系统
定义:多智体系统是一组自主智体,旨在协作和解决相互关联的问题或实现共同目标。这些系统充当分布式模块,通过通信和协调任务协同工作,在复杂的工作流程中提供可扩展性和适应性。根据应用程序的不同,系统内的智体可以共享公共内存或使用单独的隔离内存来优化任务执行。
根据应用程序的需求,有多种模式可以实现多智体系统。例如:
• 协调多智体系统:涉及一个主智体,它将子任务委托给专门的智体并集成它们的输出,通常用于动态、多步骤的工作流程。
• RAG 协调多智体系统:通过整合专门从事检索任务的智体来扩展协调系统,每个智体访问特定的知识领域或工具。首席智体动态地将查询路由到相关智体,并集成检索信息以确保准确且具有上下文感知的响应。
• 协作问题解决者:代理之间直接通信,以实现共同目标,而无需中央控制。此模式适用于分散或分布式任务,其中代理共享信息以共同解决问题。
RAG 协调多智体系统:是多智体系统的一种高级实现,其中主要智体协调多个专业智体的活动,每个智体专注于从特定知识域或工具中检索任务。主要智体充当中央协调器,动态地将查询路由到相关的检索智体,收集它们的输出,并将信息集成到统一的上下文感知响应中。这种设计确保有效处理需要来自不同域特定来源信息的复杂查询。
如图说明一个负责任的 RAG 协调多智体系统示例。当用户提交查询时,LLM 智体(协调器)首先接收该查询,该智体解析查询并根据查询的意图确定如何将其分解为子任务。每个子任务都动态分配给一个专门的 LLM 智体,这些智体负责与不同的工具或认知技能进行交互。
此示例重点介绍此类系统的特定架构模式,但可以根据应用程序的要求集成其他智体,从而为特定域或特定任务的增强提供灵活性。
专门的 LLM 智体与工具和认知技能相连,分类如下:
• 工具:
– 特定领域来源:
∗ LLM 智体 1:连接到矢量搜索引擎,可访问特定矢量数据库(例如 DB1、DB2、DB3)。这些数据库代表独特的知识领域,例如法律、财务或技术数据。
∗ LLM 智体 2:连接到知识图谱,提供结构化和互连的数据以处理复杂、相互关联的查询。
– 广泛的上下文来源:
∗ LLM 智体 3:连接到搜索 API,利用外部搜索引擎或 API 检索补充信息和更广泛的上下文数据。
• 认知技能:
– LLM 智体 4:利用护栏分类器评估 Orchestrator 和其他智体所做决策的风险级别。这些分类器是预先构建的,用于识别漏洞、道德问题和潜在风险,确保所有输出都符合安全和责任准则。
每个 LLM 智体都会从其分配的工具或技能中检索必要的信息,确保相关性和领域准确性。Orchestrator 会整合所有智体的输出,并结合 LLM 智体 4 执行的风险评估和验证。编译后的上下文以及 Orchestrator 的最终决策随后会发送到 LLM,LLM 会处理此输入以生成最终响应。此响应会返回给用户,确保其具有凝聚力、上下文准确且合乎道德。
此模式在以下场景中特别有价值:
• 跨域信息检索:当查询需要来自多个专业领域的输入时,例如将法律先例与财务数据相结合。
• 动态工作流:查询需要分解为需要不同智体来检索或处理信息的子任务。
• 可扩展知识系统:在具有分布式或孤立知识库的系统中,无需将数据合并到单个索引中即可进行检索。
• 时间敏感的决策支持:例如,通过汇总来自绩效指标、市场分析和风险评估的数据,为高管提供实时洞察。
RAG 协调多智体系统的实际用例
- 企业报告
• 场景:企业高管要求提供有关财务绩效、客户反馈和市场趋势的洞察。
• 解决方案:
(a) Orchestrator Agent 将查询拆分为子任务:财务分析、客户情绪和市场研究。
(b) 每个子任务都被路由到查询财务数据库、情绪分析工具和市场研究 API 的专门智体。
© 输出结果被整合成一份综合报告,供管理层参考。 - 医疗援助
• 场景:医生查询诊断标准、病史和医疗状况的治疗方案。
• 解决方案:
(a) Orchestrator Agent 将查询分为几个子任务:诊断、病史和治疗规划。
(b) 专门的智体访问诊断数据库、EHR 和临床指南。
© 结果被汇编成一份详细的治疗建议。 - 法律案例分析
• 场景:律师要求提供最近的法律先例、法定法律和专利纠纷的财务影响。
• 解决方案:
(a) Orchestrator 确定子任务:法律先例、法定研究和财务影响分析。
(b) 智体查询法律数据库、立法知识图和财务系统。
© 将结果综合成一份综合案例摘要。 - 金融投资组合管理
• 场景:投资者要求提供投资组合绩效、市场风险和投资机会。
• 解决方案:
(a) Orchestrator 将查询分为子任务:绩效指标、风险分析和机会。
(b) 智体访问投资组合数据库、风险评估工具和市场 API。
© 将结果组合成一份个性化投资报告。 - 供应链洞察
• 场景:物流经理要求提供有关库存水平、供应商绩效和货运跟踪的信息。
• 解决方案:
(a) Orchestrator 将查询分解为子任务:库存管理、供应商分析和货运跟踪。
(b) 智体查询库存系统、供应商绩效数据库和物流 API。
© 将输出集成到详细的供应链概览中。
人工增强的智体
人工增强智体是一种智能系统,旨在通过自动执行复杂任务同时结合人工监督、反馈或决策来与人类协作。这些智体在更大的系统中充当自适应模块,通过提供见解、生成建议并在预定义的边界内自主执行任务来增强人类能力。
根据应用需求,有多种模式可以实现人工增强的智体。例如:
• 人在环 (HITL) 智体:集成人类对决策状态和环境背景的反馈,以验证、改进或覆盖智体生成的输出。
• 协作智体:实时与人类交互,提供迭代建议或协助执行任务。
• 监督智体:监控流程、标记异常并推荐纠正措施以供人类验证和干预。
如图说明人-在-环 (HITL) 智体模式的架构,其中智体自主运行以处理查询,同时集成人类专业知识进行验证和改进。
HITL 智体工作流模式的关键组件
- 查询输入:用户提交查询,该查询被路由到 HITL 智体进行处理。
- 域知识检索:HITL 智体使用向量搜索机制从包含特定域知识的向量数据库中检索相关信息。
- 响应生成:根据检索的信息,HITL 智体生成初步响应或决策。
- 人工反馈:人工专家审查智体的输出,提供有关决策状态的反馈(例如,批准、拒绝、修改)并在需要时提供额外的上下文输入。
- 反馈循环:人工专家的反馈被集成到 HITL 智体的推理过程中,使智体能够完善其理解并改进未来的输出。
- 最终响应:一旦验证或完善,最终响应就会传递给用户。
这种模式确保智体在其领域内自主运行,但依靠人类专业知识来解决高风险或上下文敏感的决策,从而提高可靠性和适应性。反馈回路还使 HITL 智体能够根据人类交互进行学习和发展,确保随着时间的推移不断改进。
人类增强的智体包括如下实际用例:
- 医疗诊断和治疗计划
• 场景:医生使用 AI 系统协助诊断罕见疾病并制定治疗计划。
• 解决方案:
(a) 人类增强智体分析患者病史、实验室结果和临床指南。
(b) 它建议潜在的诊断和治疗方案,突出支持证据。
© 医生验证或改进建议,确保诊断与患者特定因素相符。 - 金融系统中的欺诈检测
• 场景:金融机构使用 AI 系统监控交易中是否存在潜在的欺诈或洗钱行为。
• 解决方案:
(a) 智体根据预定义的模式和异常,标记可疑活动。
(b) 合规官审查标记的案件,并验证它们是否代表真正的威胁。
© 与智体共享有关误报或新欺诈技术的反馈,以提高检测准确性。 - 法律文件审查和合规性
• 场景:公司法律团队使用 AI 系统确保合同和协议中的法规合规性。
• 解决方案:
(a) 智体扫描合同以识别缺失条款、不一致或不合规风险。
(b) 律师验证和改进标记的区域,使其符合特定的监管要求。
© 系统从人工反馈中学习,以改进未来的文档审查,确保更快、更准确的合规性检查。 - 实时网络安全监控
• 场景:组织使用 AI 智体来监控网络攻击或漏洞。
• 解决方案:
(a) 智体检测到潜在的违规行为或异常活动(例如,未经授权的访问、恶意软件)。
(b) 安全专家分析标记的事件以确认威胁的有效性并确定缓解措施。
© 已解决事件的反馈有助于智体随着时间的推移改进其威胁检测和响应能力。
未来的关键方向包括:
• 开发标准化框架以增强互操作性和可扩展性。
• 扩展特定领域的智能以实现更广泛的适应性。
• 推进人-智体协作以提高可靠性和信任度。
• 解决道德和监管问题以确保负责任地使用。
智体系统具有巨大的潜力,可以彻底改变行业并应对复杂的社会挑战。解决这些优先事项将充分发挥其影响,推动创新并在各个领域带来有意义的利益。