论文笔记——Comparing to Learn

在这里插入图片描述


论文下载:

https://arxiv.org/pdf/2007.07423.pdf

论文代码:

https://github.com/funnyzhou/C2L_MICCAI2020


论文摘要:

在深度学习时代,预训练模型在医学图像分析中发挥着重要作用,其中ImageNet预训练作为最佳方法被广泛采用。作者也提到,自然图像和医学图像存在着明显的领域差距,比如CT图像和一般的RGB图像。所以作者提出了一种新的预训练方法,称为“比较学习(Comparing to Learn)”,顾名思义它通过比较不同的图像表示来学习稳健的特征,可以从700k张X光片中学习,无需人工注释(无需标签),这就表明它是无监督学习(论文中提到的自监督学习实际上是无监督学习的一个变种)。在x光片的实验结果表明,C2L(C to L)能让模型性能明显优于ImageNet预训练以及先前提出的模型。


新的自监督:

要想提高模型,数据集是重要的一环,但是关于医学影像数据集的相关医学注释往往涉及患者隐私,并且医疗资源(专业标注医学注释人员少)有限,所以该文的焦点是如何开发不加注释(无标签)的从海量数据中学习的算法

本文的C2L(比较学习)是通过比较不同的图像特征来获得泛化的图像表示,从而用这个标准慢慢训练成一个监督学习网络。在本文,作者主要关注功能水平对比(feature level contrast),并且通过混合图像和特征批提出构造同构和异构数据对(homogeneous and heterogeneous data pairs)还提出一种基于动量的师生网络(momentum-based teacher-student architecture)用于对比学习,师生网络共享相同的结构,但更新的方式不同,具体来说,教师模型通过自身和学生网络进行更新


教师学生网络:

关于同构和异构图像数据对的定义以及C2L框架的演示:

在这里插入图片描述

Q中的浅色方块表示过去的特征(past features),分别为V2A 、Vm、V2M。

图中蓝色模块nets为学生网络,黄色模块nett为教师模块,可以看到nett是通过和nets进行更新的,将X1A和X1M传递给学生网络,将X2A和X2M传递给教师网络

同构异构对中,左下为同构对,包括V1A和V2A、V1M和V2M等。右下为异构对,多个类似V1A和Q等数据对。


算法流程:

在这里插入图片描述

假设每批XiA(i为1或2)包含Z张图像,随机对XiA进行打乱去构造成对的批XiM,λ~β(1.0,1.0)代表β分布,可以表示为:

在这里插入图片描述

作者提到,对学生网络(nets)和教师网络(nett)使用相同的模型在实际应用中并不奏效可能导致梯度爆炸

利用动量(momentum)更新网络有助于稳定训练过程,降低网络优化的难度(Algorithm1中的第17行),用指数因子θ来控制动量的程度,动量函数可以表示为:

在这里插入图片描述

C2L的目标是最小化同构对之间的距离,例如(V1A,V2A)和(V1M,V2M),同时它也需要最大化异构对之间的区别。这就需要对比目前收集的数据和先前的数据使用已经提出的记忆队列Q,用于保存特征向量以进行迭代优化

ViQ表示为Q中的一个特征向量,其中i={1,2,…,N},N为队列长度。可以把复杂的距离测量问题转化为简单的分类问题,Algorithm1的第12行具体可以表示为:

在这里插入图片描述

上图的长度为N+1将V1M与Vm和Q进行比较,从而得到另一组N+1预测:

在这里插入图片描述


数据集:

1、ChestX-ray14:

训练集包含86k张图像,而验证集包含25k张x射线。消融研究中,使用训练集中的70k幅图像进行自监督预训练,其余16k幅图像进行微调,显示预训练结果。确定合适的超参数后,将整个训练集合并到其他三个数据集。总的来说,C2L使用了700k未标记的x光片进行模型预训练

2、CheXpert:

训练集有220k幅图像,官方验证集有234幅图像。与ChestX-ray14类似,只使用不带标签的训练集进行自监督的预训练

3、MIMIC-CXR:

MIMIC-CXR数据集是一个大型的公开可用的JPEG格式胸片数据集,带有来自自由文本放射学报告的结构化标签。数据集包含377,110张JPEG格式图像。在实践中,作者将整个数据集视为一个未标记的数据库

4、MURA:

MURA是骨骼x射线的数据集。训练集包含36k个x射线,验证集包含3k个图像。使用整个数据集进行C2L预训练

5、kaggle肺炎检测:

这个数据集是为肺炎的自动和准确诊断而设计的。作者在阶段1中将训练集分成一个局部训练集(80%)和一个验证集(20%)。评价指标为平均平均精度


实验结果:

Mix表示传统的混合方法,Bat、Feat分别是Batch和Feature的缩写。作者报告了在ChestX-ray14中14个类别的性能。最好的结果用粗体显示,次之的结果用下划线显示:

在这里插入图片描述

Q、Mix的增强策略和长度的影响:

在这里插入图片描述

MG表示Model Genesis,MoCo表示Momentum Contrast,使用ChestX-ray14的结果:

在这里插入图片描述

Kaggle肺炎数据集不同预测分数阈值下的平均平均精度(mAP)结果:

在这里插入图片描述


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值