显卡利用率低可能的原因汇总

1. 确定是否用到GPU

运行下面命令动态查看GPU使用情况。

watch -n 0.1 nvidia-smi

如果程序运行时,Processes栏有自己的程序名字,说明使用到了GPU。请仔细观察显存Memory-Usage和GPU使用率GPU-Util的情况。

2. 显卡利用率低的可能原因

可以使用IDE软件的Profile工具查看程序的时间花在哪些部分,可能是数据读取、模型训练、以及写日志等等。

  • 数据集的预处理花费时间比较长。相当于GPU要等待CPU处理好数据再计算,所以利用率低;
  • 超内存或者超显存。如果内存和显存太小,计算机自动开辟虚拟内存,那么反复通信的成本很高,利用率低;可以考虑调小batch size试试;
  • 模型原因,有时候会因为模型代码编写不合理,会使得训练时间非常长(我遇到过),比如说模型中有些操作是非tensorflow/pytorch自带的,或者存在resize等耗时操作;
  • 训练时花了大量时间写日志。可以检查一下,是不是日志写的很频繁,或者写的日志包含图片、视频等大文件;否则相当于训练极快,但是都在等你写日志写完再进入下一个step,那利用率肯定低。
### 多GPU并行推理配置与实现方法 在现代深度学习应用中,多GPU并行推理能够显著提高处理速度和效率。通过合理配置硬件资源以及优化软件框架设置,可以充分利用多个图形处理器的能力来加速模型预测过程。 对于PyTorch环境下的多GPU部署方案而言,首先需要确认当前系统中有多少可用的CUDA设备: ```python import torch print("Let's use", torch.cuda.device_count(), "GPUs!") ``` 上述代码会打印出可被识别到的GPU数量[^3]。为了使神经网络能够在这些设备之间分配任务执行并行化操作,通常有两种主要策略可供选择——数据并行(Data Parallelism)和模型并行(Model Parallelism)。其中前者更为常见也更容易实施,在此背景下介绍具体做法如下所示: #### 数据并行模式(DataParallel) 当采用`nn.DataParallel()`封装原有模块实例时,输入张量会被自动分割成更小批次分发给不同计算单元独立完成前向传播;之后再汇总各部分输出结果形成最终响应。这种方式特别适合于拥有大量样本集且单次迭代所需内存占用相对较小的情况。 下面是一个简单的例子展示如何创建一个多GPU版本的ResNet18分类器来进行图像识别任务中的批量推断工作: ```python model = torchvision.models.resnet18(pretrained=True).cuda() # 将预训练好的模型加载至默认的第一个GPU上 if torch.cuda.device_count() > 1: model = nn.DataParallel(model) # 如果存在超过一块以上的显卡,则启用数据并行机制 ``` 值得注意的是,尽管这种方法简单易用,但在某些情况下可能会带来额外开销甚至降整体吞吐率。因此建议开发者们根据实际应用场景灵活调整参数设定以达到最佳效果[^1]。 #### 模型并行模式(ModelParallel) 相比之下,另一种思路是将整个架构切分为若干子组件分别放置于不同的物理位置之上运行,即所谓的“模型并行”。这要求使用者具备较强的技术背景去设计合理的划分逻辑,并妥善解决跨节点间通信同步等问题。不过一旦成功实现了高效协作关系的话,往往可以获得更好的性能表现尤其是针对那些极其庞大复杂的深层结构来说更是如此。 综上所述,无论是哪种形式都离不开良好的前期规划准备阶段,包括但不限于评估目标平台特性、权衡利弊选取合适技术路线等方面的工作都需要认真对待才能确保项目顺利推进下去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值