上周五,在星球最新的一期“追风筝的人”里,我们提到一个观点:别把你自己的一些人生决定,寄托在别人身上。说出这句话的时候,我想起一位叫“Zhou伊”的用户,她前段时间,曾经分享过她的励志故事。
也许你正在考虑转行,也许你对明天一筹莫展,也许你的日子岁月静好。不管怎么样,希望今天这篇文章,能给你一点力量。
两年前,我特别想问池老师一个问题:我现在转行到数据科学领域,能行么?个人情况如下:年龄40+,三娃妈,人在美国,没有在当地学习和工作的经历(英文能力非常有限),理科背景,二十年前上大学的时候学过一点点C语言,曾经从事的工作和数据科学有大约半毛钱(都不到)的关系。
当时特别希望有人对我说,向着目标前进吧,只要你足够努力,一定能实现理想。
这个问题最终还是没有问出口,原因是不管池老师怎么回答或者因为答案太过明显老师拒绝回答,我都会向着这个目标努力,一是因为清楚地知道自己为什么要转行,有足够的动力。
当时接触到一个概念,Data Science for Social Good,深入了解后决定,我的后半生就它了。
我坚信一点,解决商业以外的社会问题,比如贫困、不平等、教育等,同样需要数据支持,而且永远不会嫌人手多。这个动力足够强大,支撑着我一路走下去。二是美国的就业环境相对宽松,即使是科技行业,对性别和年龄也没有明显的歧视。准确地说,决定转行时只有第一点成立;第二点当时并不清楚,但是学习和找工作的过程中能感受到。
两年前加入“MacTalk的朋友们”时,已经开始自学编程但是还有些迷茫,所以想有人指点;两年后加入“让时间为你证明”的时候,我还没有找到工作,面试了两家公司失败,第三家公司面试完了在等结果,第四家公司面试进行中。现在的情况是,拿到并接受了第三家公司的Offer,第四家公司也抛出了橄榄枝,但是忍痛放弃。
这两家公司都是我完全不曾想过能有机会加入的大厂,而第三家公司的理念我非常认同,和我的终极理想也更接近。
三周后入职第三家公司,岗位是学徒工程师(该公司每年都会开放少量的学徒岗位,为非科班出身的求职者提供申请的机会,包括前端/后端软件工程师,数据科学/机器学习工程师等,职级很低但是自我发展空间大)。竞争很激烈,完成作业加面试过程感觉脱层皮(至少我是这样),但是真的很公平。申请材料完全不涉及个人隐私,包括年龄性别家庭状况,就是回答一系列问题,看申请人是否能自证具有强烈且持久的学习动机及能力。从申请到最后拿到正式Offer,时长三个半月。
决定转行后,从自学编程(Python)起步到最后找到工作,过程历时两年九个月,拿到offer时,老三快三岁了(我是从老三两个月大时开始自学编程的)。最初的九个月,因为老三太小且需要做一系列的治疗,学习进展缓慢,但从未停滞。
接下来的一年五个月因为疫情,三个娃都在家,没有老人帮忙,每天的学习时间就是早饭午饭晚饭时间(老公在家上班可以看着孩子吃饭),晚上孩子入睡后的时间,周末老公尽量带娃空出时间让我学习,大约每周可以学习35-40小时;学校重新开放后,孩子上学的上学,送幼儿园的送幼儿园,我终于完成了课程(疫情期间报了一个网上的数据科学培训班)并参加了两个开放式项目(志愿者项目,没有工资),别人兼职做,我是全职做,以积累项目经验。
大概过程就是这样。两年里擦干过多少次眼泪只有自己知道。
虽然因为就业环境不同,我的经历没有什么参考意义,但还是想在星球里做个小结,希望能给想做出改变的朋友一点前进的勇气。
最后
最后多说一句,小编是一名python开发工程师,这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!(文末领取)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。(文末领读者福利)
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。 (文末领取哦)