ABOUT ME
“多年互联网大厂研发经验。专注计算机原理、AI人工智能、全栈开发。分享行业发展、职业规划、人生领悟。”
在过去的2024年,科技日新月异,AI人工智能无疑是科技领域最为耀眼的明星。
AI算法岗,以其炙手可热的市场需求和高昂的薪资待遇,成为众多研发工程师梦寐以求的职业目标。
Newton哥了解到,字节、美团、京东等互联网大厂今年对AI算法岗应届生开出的薪资非常有竞争力,普遍达到50万+,甚至有大神拿到了百万年薪。
也经常有小伙伴在后台与Newton哥交流:AI算法岗位有哪些,该如何选择?自己是否适合AI算法,选择应用开发还是AI算法岗?等各种问题。
今天,跟着Newton哥来了解一下AI算法岗,以期助力你未来的职业选择。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
Al算法高薪岗位最多
有脉脉高聘发布的《2024年度人才迁徙报告》数据显示。
2024年1-10月,新发岗位平均月薪前10的技术岗位,平均月薪均超过6万元,其中AI大模型相关岗位占比高达50%,优势明显。
2024年1-10月,从应届生新发岗位平均月薪来看,在高薪岗位前10中,人工智能相关岗位占据8席,机器学习以47569元高居榜首。
AI行业全景图
AI行业主要分为三大领域:基础技术、通用技术及应用层。
基础技术层:AI芯片、大数据与云计算构成了AI的基石,提供必要的算力、数据支持及数据存储能力。
通用技术层:则涵盖了广泛的算法方向,如机器学习、深度学习、自然语言处理、计算机视觉等热门岗位技能,以及智能语音识别、大模型、多模态、AIGC、搜广推、风控、机器人、自动驾驶等前沿技术。该部分是本文重点讲解的内容。
AI应用层:最上层直接面向用户,并与各行各业深度融合,实现AI技术的广泛赋能。
AI算法岗有哪些
1. 机器学习(ML)算法工程师
专注于研究和实现各种机器学习算法,如分类、回归、聚类、推荐系统等。工作涉及数据预处理、特征工程、模型选择与训练、评估与优化。
技术栈:编程语言:Python、R;机器学习框架:TensorFlow、PyTorch、Scikit-learn;数据处理工具:Pandas、NumPy;数学基础:线性代数、概率论、统计学
发展前景:大数据时代,机器学习在各个行业中的应用越来越广泛,如金融风控、推荐系统、医疗诊断等。
2. 深度学习(DL)算法工程师
主要负责构建和优化深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。工作涉及数据清洗、模型设计、训练、调参以及部署。
技术栈:编程语言:Python;深度学习框架:TensorFlow、PyTorch、Keras;GPU加速:CUDA、cuDNN;数学基础:微积分、线性代数、概率论
发展前景:深度学习在图像识别、语音识别、自然语言处理等领域取得了显著成果,推动了人工智能的快速发展。随着技术的不断进步,新的应用场景不断涌现。
3. 自然语言处理(NLP)算法工程师
专注于研究和实现各种NLP技术,如文本分类、情感分析、命名实体识别、机器翻译等。
技术栈:编程语言:Python;NLP框架:NLTK、SpaCy、Transformers;深度学习框架:TensorFlow、PyTorch;数学基础:线性代数、概率论、信息论
发展前景:NLP在智能客服、金融分析、舆情监控、医疗诊断等领域有着广泛的应用需求,如智能写作助手、对话系统、情感分析等。
4. 计算机视觉(CV)算法工程师
主要负责研究和实现各种计算机视觉技术,如图像分类、目标检测、图像分割、视频分析等。
技术栈:编程语言:Python、C++;CV框架:OpenCV、Dlib;深度学习框架:TensorFlow、PyTorch;数学基础:线性代数、微积分、概率论
发展前景:计算机视觉在安防监控、自动驾驶、医疗影像诊断等领域有着广泛的应用需求,如人脸识别、行为识别、智能监控等。
5. 智能语音识别算法工程师
主要负责研究和实现语音识别技术,包括声学模型、语言模型和解码算法的结合。
技术栈:编程语言:Python;语音识别框架:Kaldi、Mozilla DeepSpeech;深度学习框架:TensorFlow、PyTorch;数学基础:信号处理、概率论
发展前景:语音识别在智能家居、客户服务、自动字幕生成等领域有着广泛的应用需求。
6. 大模型算法工程师
主要负责研究和实现大规模深度学习模型,如GPT、BERT等。
技术栈:编程语言:Python;深度学习框架:TensorFlow、PyTorch;分布式计算:Hadoop、Spark;数学基础:线性代数、概率论、优化理论
发展前景:大模型在自然语言处理、图像识别等领域取得了显著成果,推动了人工智能的快速发展,如智能写作助手、对话系统、推荐系统等。
7. 多模态算法工程师
主要负责研究和实现结合多种数据模态(如文本、图像、音频等)的算法。
技术栈:编程语言:Python;深度学习框架:TensorFlow、PyTorch;数据处理工具:Pandas、NumPy、OpenCV;数学基础:概率论、信息论、优化理论
发展前景:多模态算法在智能客服、医疗诊断、舆情监控等领域有着广泛的应用需求,如跨模态检索、多模态对话系统等。
8. AIGC(人工智能生成内容)算法工程师
主要负责研究和实现基于人工智能的内容生成技术,如文本生成、图像生成、音频生成等。
技术栈:编程语言:Python;深度学习框架:TensorFlow、PyTorch;生成模型:GAN、VAE;数学基础:概率论、信息论
发展前景:AIGC在内容创作、广告营销、娱乐等领域有着广泛的应用需求,如智能写作助手、图像生成器、音频合成器等。
9. 搜广推(搜索、广告、推荐)算法工程师
主要负责研究和实现搜索引擎、广告系统和推荐系统的算法。
技术栈:编程语言:Python;机器学习框架:TensorFlow、PyTorch;大数据处理:Hadoop、Spark;数学基础:概率论、信息论、优化理论
发展前景:搜广推算法在互联网行业有着广泛的应用需求,如个性化推荐、精准广告投放等。
10. 风控算法工程师
主要负责研究和实现风险控制算法,如信用评分、欺诈检测等。
技术栈:编程语言:Python;机器学习框架:TensorFlow、Scikit-learn;数据处理工具:Pandas、NumPy;数学基础:概率论、统计学
发展前景:风控算法在金融、电商等行业有着广泛的应用需求,如智能风控系统、反欺诈平台等。
11. 机器人
主要负责研究和实现机器人的智能算法,如路径规划、运动控制、语音识别与合成等。
技术栈:编程语言:Python、C++;机器人框架:ROS(Robot Operating System);深度学习框架:TensorFlow、PyTorch;数学基础:线性代数、微积分、控制理论
发展前景:机器人算法在智能制造、智能家居、医疗康复等领域有着广泛的应用需求,如智能机器人助手、自动驾驶机器人等。
12. 自动驾驶
主要负责研究和实现自动驾驶系统的算法,如环境感知、路径规划、决策控制等。
技术栈:编程语言:Python、C++;自动驾驶框架:Autoware、Apollo;深度学习框架:TensorFlow、PyTorch;数学基础:线性代数、微积分、控制理论
发展前景:自动驾驶算法在汽车行业有着广泛的应用需求。随着技术的不断进步,自动驾驶的应用场景越来越丰富。
几个常见的问题
1. 机器学习和深度学习的区别有哪些?
机器学习(ML)和深度学习(DL)都是人工智能的分支。
ML使用简单模型如线性回归、决策树等,适合小数据集,易于理解和解释。
DL基于多层神经网络,能处理复杂模式,但需要大量数据和计算资源。
ML更注重特征工程,DL则自动学习特征。ML模型通常更易于解释,而DL被视为"黑箱"。两者在不同领域各有优势。
2. 大模型和多模态的区别和联系?
大模型(Large Models)指的是参数众多的AI模型,如GPT,它们能够处理复杂的单一模态任务,如文本或图像识别。
多模态(Multimodality)则关注整合多种类型的数据,例如结合文本、图像和声音,以实现跨模态的理解和交互。
多模态模型常基于大模型架构,通过扩展来处理多种数据类型。
大模型可能专注于单一模态的深度学习,而多模态模型则致力于融合多种模态信息,提供更全面的分析和响应能力。
3. AIGC和多模态的区别和联系?
AIGC侧重于内容的生成,通过学习和分析数据创造新内容。
多模态则侧重于对图像、语音、文本等多种类型数据的处理和理解,实现信息的多维度融合。
两者在技术上有所区别,但AIGC多模态技术也利用多模态数据进行内容生成,显示了两者在实际应用中的紧密联系。
AI算法岗位要求与个人权衡
Newton哥提醒,AI算法岗位虽然高薪,并非人人可得。
AI算法岗对学校和学历要求非常高,一般只有985高校的硕士甚至博士才有机会进入面试。候选人还需要在相关领域发表过专业论文,并具备一定的实践经验。
相比之下,应用开发岗(后端、云计算、大数据分析、客户端、网络安全等),虽不如AI人工智能那么抢眼,但其入门门槛相对低一些,且市场需求大,同样具有广阔的发展空间。
选择职业道路时,不仅要看薪资,更要考虑个人的兴趣、能力和职业发展规划。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!