两个基于神经网络的情感分析模型

本文探讨了两种基于神经网络的情感分析模型,包括Deep Convolutional Neural Networks和Regional CNN-LSTM模型,分别用于短文本和篇章级别的情感分析。Deep CNN模型通过word-和character-level embeddings捕捉语义和形态信息,而CNN-LSTM模型通过区域卷积和LSTM编码器捕获时序关系,以进行连续维度的情感分析。实验结果显示,这两种模型在各自任务上表现优越。
摘要由CSDN通过智能技术生成

前言

​情感分析,也称倾向性分析,即对一个主观的文本分析判断说话者的情感色彩或者褒贬态度。传统的方法一般有基于情感词典(构建情感词典后统计文本极性词进行判断)和基于机器学习(使用词袋模型对词语向量化后利用机器学习方法训练分类器),但结果往往差强人意。本周阅读的两篇论文都是基于神经网络对文本进行情感分析,一篇是针对句子级别的文本,另一篇是针对篇章级别的文本。下面进行简单介绍。


Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts

​本文的主要结构是输入一个句子文本,经过两层CNN转化成一个sentence-level的向量,然后将这个向量输入到一个3层的神经网络中,经过训练得到正确的分类。

1 Word-Level and Character-Level Embeddings

​文中提出一种组合的Word embedings的形式,即把每个词通过word2vec训练得到一个word-level的向量 rwrd ,然后把组成每个词的字母字符也训练得到一个character-level的向量 rwch ,这样有利于同时捕捉到语义信息和词形态信息,(比如一些程度副词: terribly,badly )组合得到一个新的词向量 un=[rwrd,rwch]

rwrd 利用word2vec训练得到的向量表示, rwch 需要通过一层CNN进行训练得到。思路如下:

​假设词w由M个字母组成,每个字母通过一个character embedding matrix转化成一个向量 rchr ,即 r

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值